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Natural radioactivity

Natural radioactivity

Natural radioactivity has been discovered by Henri Becquerel and
Marie Sk lodowska-Curie in late 1890s.

Radioactive polonium and radium elements were isolated by Marie
and Pierre Curie in 1898.

The process involves spontaneous disintegration of the parent element
and a formation of a daughter element.

A number of long-lifetime processes were identified since then:

α-decay : emission of 4He
β−-decay: emission of an electron and electron anti neutrino
electron capture: capture of an electron from an atomic orbit by a
proton
β+-decay: emission of a positron and electron neutrino
heavy fragment emission: for example 12C or 16O
fission: split of a nucleus into two fragments of comparable mass and
charge
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Natural radioactivity

Natural radioactivity

To quantify the decay process several measures can be introduced:

Activity A: number of disintegration per second

half-life T 1
2

: time after which the number of radioactive nuclei in a
sample is reduced to half of its initial value

lifetime τ : time after which the number of radioactive nuclei in a
sample is reduced by a factor of e ≈ 2.718 of its initial value.

NUCS 342 (Lecture 4) January 19, 2011 4 / 34



Natural radioactivity

Units

Lifetimes and half-lives are measured in units of time.

Nuclear lifetimes span broad range from 10−20 s up to infinity (for
stable nuclei).

The SI unit for activity is 1 Becquerel, abbreviated as [Bq],

1 [Bq] = 1 [dps] (decay/disintegration per second). (1)

An often used non-SI unit is 1 Curie, abbreviated [Ci].

1 [Ci] = 3.7× 1010 [Bq] (2)

1 [Ci] corresponds to activity of 1 g of Radium and is a sizable unit.

Typical environmental levels of radioactivity are pico-nano Curie
(0.01-10 [Bq]), research calibration sources are typically of micro
Curie (10 [kBq]) activity, a reactor upon a shutdown have activity in
the range of giga Curie ( 109 Ci or 1019 [Bq]).
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Natural radioactivity

Natural radioactivity

Some naturally occurring long-lived radioactive isotopes

Nuclide Half-life [years] Natural abundance
40
19K 1.28×109 0.01%
87
37Rb 4.8×1010 27.8%
113
48Cd 9×1015 12.2%
115
49In 5.5×1014 95.7%

128
52Te 7.7×1024 31.7%

130
52Te 2.7×1021 33.8%

138
57La 1.1×1011 0.09%

144
60Nd 2.3×1015 23.8%

147
62Sm 1.1×1011 15%

148
62Sm 7×1015 11.3%
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Nuclear decay

Nuclear decay

One can show experimentally that the sample activity A is
proportional to the number N of nuclei in the sample
(decay is the first-order reaction).

Denoting the proportionality constant by λ and calling it the decay
rate one obtains

A = λN

Activity is the number of disintegration per second,

A∆t = N(t)− N(t + ∆t) = −(N(t + ∆t)− N(t))

A = −N(t + ∆t)− N(t)

∆t
= −dN

dt

Above equations when combined give

−dN

dt
= λN

N(t) = N(0) exp(−λt)
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Nuclear decay

Nuclear decay

Defining lifetime as

τ =
1

λ

the nuclear decay law can be written as

N(t) = N(0) exp
(
− t

τ

)
It is easy to note that after time t = τ the number of radioactive
nuclei in the samples is reduced by the factor of e

N(τ) = N(0) exp
(
−τ
τ

)
= N(0) exp−1 =

1

e
N(0)
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Nuclear decay

Nuclear decay

The half-life is

N(t = T 1
2
) = N(0) exp

(
−λT 1

2

)
=

1

2
N(0)

exp
(
−λT 1

2

)
=

1

2

−λT 1
2

= ln

(
1

2

)
= − ln(2)

T 1
2

=
ln(2)

λ
= ln(2)τ = 0.693τ
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Nuclear decay

Nuclear decay

T1/2 = 1.5, τ = T1/2/ ln(2) = 2.16
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Nuclear decay

Decay rate measurements

For large range of lifetimes measurements of the decay curves shown
on the graphs above can be carried out and lifetimes/decay rates can
be fitted.

However, for lifetimes comparable or longer than the span of a human
life there are no measurable changes in the activity of a sample which
prohibits direct decay curve measurements.

In these cases the decay rates are deduce from the ratio of observed
activity A to the absolute number of radioactive atoms N in a sample.

A = λN =⇒ τ =
1

λ
=

N

A
(3)

The absolute number of atoms can be established based on the total
mass of the sample and its isotopic composition.

Isotopic composition can be established using mass spectroscopy.
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Nuclear decay

Activity

It should be stressed that the activity of a sample depends on its mass
m (number of radioactive atoms) and the decay rate. Denoting the
molar mass by µ and the Avogadro number by NA one gets

A = λN = λ
m

µ
NA =

1

τ

m

µ
NA (4)

This implies that small mass of short-lived isotopes may have the
same activity as a large mass of long-lived isotopes.

For example 1 MBq of tritium (T1/2=12.33 y) corresponds to
5.59× 1014 or 1.1 [nmole] of atoms or 2.78 [ng] of mass

1 MBq of 14C (T1/2=5730 [y]) corresponds to 2.6×1017 or
0.43 [µmole] of atoms or mass of 6 [µg].
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Nuclear decay

Detection efficiency

Radiation detectors are built to detect decay products.

As such detectors respond to activity.

In a typical experiments number of counts NC corresponding to
detection of radiation of interest in a detector is recorded per unit of
time. The units of NC are counts per second.

This number of counts is related to the activity by the response
function of a detector ε called efficiency

NC = εA (5)

Efficiency depends on the type and geometry of the detector, as well
as type and energy of detected radiation.
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Nuclear decay

Activation analysis

Tritium is produced in atmosphere by reaction of fast neutrons
generated by cosmic rays with 14N

n +14 N →12 C +3 H (6)

Tritium is then incorporated into water and remove from atmosphere
as rain and snow.

A 50 ml sample of water typically show 1 [dpm] (disintegration per
minute) associated with the β− decay of tritium to 3He. Based on
that let us estimate number ratio of tritium to hydrogen in water.

The number of tritium atoms in the sample is

N3H =
1

λ
A = τA = 12.33 [y]∗1 [1/min] = 6.5×106 = 1.08×10−17 [mole]

(7)
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Nuclear decay

Activation analysis

The number of tritium atoms in the sample is

N3H =
1

λ
A = τA = 12.33 [y]∗1 [1/min] = 6.5×106 = 1.08×10−17 [mole]

The mass of the 50 ml sample is 50 g.

The number of water molecules in the sample is

NH2O =
m

µ
=

50

18.02
= 2.77 [mole] = 16.7× 1023 (8)

There are two hydrogen atoms per molecule, thus the tritium to
hydrogen number ratio is

N3H

N1H
=

1.08× 10−17

5.54
= 2× 10−18 (9)
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Independent decay of radioactive mixture

Independent decay of radioactive mixture

Quite often radioactive samples are mixtures of radioactivities
decaying at different rates.

If the decay products from both samples are the same (for example
electrons from β− decay) a detector will see the combined decay of
the mixture.

In such cases a special care has to be taken if lifetimes are extracted.
A common procedure is to extract parameters for the longest-lived
activity first, subtract it from the data, analyze the next longest lived,
etc.

Currently this is done using computer fits.

An example for a two-component mixture is analyzed below.
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Independent decay of radioactive mixture

Independent decay of two radioactivities

N(t)=70× exp

(
− t

ln(2)1.5

)
+30× exp

(
− t

ln(2)15

)
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The Bateman equation

Decay chains

Decay chains in which radioactive decay of an unstable isotope feeds
radioactive decay of another unstable isotope are commonly
encountered in nature and experimental nuclear science.

For example, there are three naturally occurring, long-lived chains of
α and β decays originating in the long-lived isotopes of 232Th
(T1/2=14.1 Gy), 235U (T1/2=0.7 Gy) and 238U (T1/2=4.5 Gy).

Another example is a sequence of β decay of unstable isotopes along
the mass parabolas for a fixed mass number until the most stable
isotope is reached.

In case of the decay chain activities and abundances of radioactive
isotopes are not independent. Rather, they are determined by the
history of the decay: the decay rates and abundances in the preceding
part of the chain.

Thus the chain decay is different then independent decay of a mixture
considered so far.
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The Bateman equation

235U and 238U chains
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The Bateman equation

The Bateman equation

The Bateman equation is a mathematical model describing
abundances and activities in a decay chain as a function of time,
based on the decay rates and initial abundances.

The Bateman equation is not a single equation, rather it is a method
of setting up differential equations describing the chain of interest
based on its known properties.

We are going to consider the simplest case with a parent feeding
single daughter.

Then by varying the parameters such as the decay rates and relative
initial abundances we will investigate the chain evolution as a function
of time.
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The Bateman equation

Two-decay chain

Let us denote

Initial number of parent and daughter atoms as N1(0) and N2(0)
Number of parent and daughter atoms in time as N1(t) and N2(t)
Parent and daughter activities in time as A1(t) and A2(t)
Parent and daughter decay rates by λ1 and λ2

The equation for the time evolution of the parent is the same as for a
single step decay

dN1(t)

dt
= −λ1N1(t) (10)

The equation for the time evolution of the daughter, however,
includes a term describing daughter decay but also daughter feeding
by the parent

dN2(t)

dt
= −λ2N2(t) + λ1N1(t) (11)
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The Bateman equation

Two-decay chain

The solution of Eq. 10 is

N1(t) = N1(0) exp (−λ1t) (12)

Taking this into account Eq. 11 become

dN2(t)

dt
= −λ2N2(t) + N1(0) exp (−λ1t) (13)

The solution for N2(t) is

N2(t) = N2(0) exp (−λ2t) +

− N1(0)
λ1

λ2 − λ1
(exp (−λ2t)− exp (−λ1t)) (14)
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The Bateman equation

Two-decay chain: abundance for a special case

Blue: parent T1/2=1.5, N1(0) = 100%
Red: daughter T1/2=3, N2(0) = 0%
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The Bateman equation

Two-decay chain: abundances for a special case

Blue: parent T1/2=1.5, N1(0) = 100%
Red: daughter T1/2=3, N2(0) = 0%
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The Bateman equation

Two-decay chain: activities

Eqs 12 and 14 define abundances

Activities of the parent and the daughter can be calculated from

A1(t) = λ1N1(t) = λ1N1(0) exp (−λ1t)

A2(t) = λ2N2(t) = λ2N2(0) exp (−λ2t) + (15)

− N1(0)
λ1λ2
λ2 − λ1

(exp (−λ2t)− exp (−λ1t))
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The Bateman equation

Two-decay chain: activities for a special case

Blue: parent T1/2=1.5, N1(0) = 100%
Red: daughter T1/2=3, N2(0) = 0%
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The Bateman equation

Two-decay chain: activities for a special case

Blue: parent T1/2=1.5, N1(0) = 100%
Red: daughter T1/2=3, N2(0) = 0%
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Decay branches

Decay branches

Decay branches are observed when there is more than a single process
for disintegration of the parent nucleus.

For example, in the decay chain of 238U 218Po can α-decay to 214Pb
or β− decay to 218At.

Another example is in the decay chain of 235U with 227Ac having an α
branch to 223Fr and a β− decay branch to 227Th.

Yet another example are decays of 235U and 238U by spontaneous
fission which is a tiny, however, existing branch as compared to the
dominating α decay.
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Decay branches

235U and 238U chains
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Decay branches

Total decay rate and branching ratios

For clarity, let us consider two competing branches in the decaying
parent: an α and a β branch.

The decay rates λα and λβ define probability per unit time for
disintegration by the respective process. The total probability for
disintegration is

λ = λα + λβ (16)

Relative probability for each branch decay, called the branching ratio,
is the ratio of the respective decay rate to the total decay rate

brα =
λα
λ

=
λα

λα + λβ

brβ =
λβ
λ

=
λβ

λα + λβ
(17)
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Decay branches

Lifetime and partial lifetimes

The decay (without feeding) is defined by the total rate

dN(t)

dt
= −λN(t) = −(λα + λβ)N(t) =⇒

N(t) = N(0) exp (−λt)) = N(0) exp (−(λα + λβ)t) =

N(0) exp (−λαt) exp (−λβt) (18)

Lifetime of the parent is defined by the total rate

τ =
1

λ
(19)

Partial lifetimes for the decays are defined as

τα =
1

λα
, τβ =

1

λβ
(20)
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Decay branches

Lifetime and partial lifetimes

Note that while
λ = λα + λβ (21)

and the total rate is dominated by the larger of λα, λβ partial rates.

For the lifetime and partial lifetimes this implies

1

τ
=

1

τα
+

1

τβ
(22)

and the lifetime of the parent is dominated by the shorter partial
lifetime.

It should be stressed that

τ 6= τα + τβ

and that there is only one lifetime τ defining decay of the parent.
Partial lifetimes can be extracted from measured branching ratios.
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