Radioactive decay and the Bateman equation

Introduction to Nuclear Science

Simon Fraser University SPRING 2011

NUCS 342 — January 19, 2011

January 19, 2011

1 / 34

NUCS 342 (Lecture 4)

NUCS 342 (Lecture 4)

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

2 Nuclear decay

NUCS 342 (Lecture 4)

(E ▶ 《 E ▶ E ク ९ () January 19, 2011 2 / 34

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

- 2 Nuclear decay
- Independent decay of radioactive mixture

æ

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

- 2 Nuclear decay
- Independent decay of radioactive mixture
- 4 The Bateman equation

3

< ロ > < 同 > < 三 > < 三

- 2 Nuclear decay
- Independent decay of radioactive mixture
- 4 The Bateman equation
- 5 Decay branches

NUCS 342 (Lecture 4)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

Natural radioactivity

- Natural radioactivity has been discovered by Henri Becquerel and Marie Skłodowska-Curie in late 1890s.
- Radioactive polonium and radium elements were isolated by Marie and Pierre Curie in 1898.
- The process involves spontaneous disintegration of the parent element and a formation of a daughter element.
- A number of long-lifetime processes were identified since then:
 - α -decay : emission of ⁴He
 - $\beta^-{\rm -decay:}$ emission of an electron and electron anti neutrino
 - electron capture: capture of an electron from an atomic orbit by a proton
 - β^+ -decay: emission of a positron and electron neutrino
 - heavy fragment emission: for example ¹²C or ¹⁶O
 - fission: split of a nucleus into two fragments of comparable mass and charge

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Natural radioactivity

- To quantify the decay process several measures can be introduced:
 - Activity A: number of disintegration per second
 - half-life $T_{\frac{1}{2}}$: time after which the number of radioactive nuclei in a sample is reduced to half of its initial value
 - lifetime τ : time after which the number of radioactive nuclei in a sample is reduced by a factor of $e \approx 2.718$ of its initial value.

(日) (周) (三) (三)

Units

- Lifetimes and half-lives are measured in units of time.
- Nuclear lifetimes span broad range from 10^{-20} s up to infinity (for stable nuclei).
- The SI unit for activity is 1 Becquerel, abbreviated as [Bq],

1 [Bq] = 1 [dps] (decay/disintegration per second). (1)

• An often used non-SI unit is 1 Curie, abbreviated [Ci].

1 [Ci] =
$$3.7 \times 10^{10}$$
 [Bq] (2)

- 1 [Ci] corresponds to activity of 1 g of Radium and is a sizable unit.
- Typical environmental levels of radioactivity are pico-nano Curie (0.01-10 [Bq]), research calibration sources are typically of micro Curie (10 [kBq]) activity, a reactor upon a shutdown have activity in the range of giga Curie (10⁹ Ci or 10¹⁹ [Bq]).

NUCS 342 (Lecture 4)

Natural radioactivity

Some naturally occurring long-lived radioactive isotopes

Nuclide	Half-life [years]	Natural abundance
⁴⁰ ₁₉ K	1.28×10^{9}	0.01%
⁸⁷ ₃₇ Rb	4.8×10^{10}	27.8%
¹¹³ ₄₈ Cd	9×10 ¹⁵	12.2%
¹¹⁵ ₄₉ In	5.5×10^{14}	95.7%
¹²⁸ ₅₂ Te	7.7×10^{24}	31.7%
¹³⁰ ₅₂ Te	2.7×10^{21}	33.8%
¹³⁸ 57La	1.1×10^{11}	0.09%
¹⁴⁴ ₆₀ Nd	2.3×10^{15}	23.8%
¹⁴⁷ ₆₂ Sm	1.1×10^{11}	15%
¹⁴⁸ ₆₂ Sm	7×10^{15}	11.3%

3

イロト イヨト イヨト イヨト

- One can show experimentally that the sample activity A is proportional to the number N of nuclei in the sample (decay is the first-order reaction).
- \bullet Denoting the proportionality constant by λ and calling it the decay rate one obtains

$$A = \lambda \Lambda$$

• Activity is the number of disintegration per second,

$$A\Delta t = N(t) - N(t + \Delta t) = -(N(t + \Delta t) - N(t))$$

 $A = -\frac{N(t + \Delta t) - N(t)}{\Delta t} = -\frac{dN}{dt}$

Above equations when combined give

$$-\frac{dN}{dt} = \lambda N$$
$$N(t) = N(0) \exp(-\lambda t)$$

Defining lifetime as

$$au = \frac{1}{\lambda}$$

the nuclear decay law can be written as

$$N(t) = N(0) \exp\left(-rac{t}{ au}
ight)$$

• It is easy to note that after time $t = \tau$ the number of radioactive nuclei in the samples is reduced by the factor of e

$$N(\tau) = N(0) \exp\left(-\frac{\tau}{\tau}\right) = N(0) \exp^{-1} = \frac{1}{e}N(0)$$

(日) (同) (三) (三)

• The half-life is

$$N(t = T_{\frac{1}{2}}) = N(0) \exp\left(-\lambda T_{\frac{1}{2}}\right) = \frac{1}{2}N(0)$$
$$\exp\left(-\lambda T_{\frac{1}{2}}\right) = \frac{1}{2}$$
$$-\lambda T_{\frac{1}{2}} = \ln\left(\frac{1}{2}\right) = -\ln(2)$$
$$T_{\frac{1}{2}} = \frac{\ln(2)}{\lambda} = \ln(2)\tau = 0.693\tau$$

NUCS 342 (Lecture 4)

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Nuclear decay

$$T_{1/2}=1.5$$
, $au=T_{1/2}/\ln(2)=2.16$

Nuclear decay

Decay rate measurements

- For large range of lifetimes measurements of the decay curves shown on the graphs above can be carried out and lifetimes/decay rates can be fitted.
- However, for lifetimes comparable or longer than the span of a human life there are no measurable changes in the activity of a sample which prohibits direct decay curve measurements.
- In these cases the decay rates are deduce from the ratio of observed activity A to the absolute number of radioactive atoms N in a sample.

$$A = \lambda N \implies \tau = \frac{1}{\lambda} = \frac{N}{A}$$
 (3)

- The absolute number of atoms can be established based on the total mass of the sample and its isotopic composition.
- Isotopic composition can be established using mass spectroscopy.
 NUCS 342 (Lecture 4)

Activity

 It should be stressed that the activity of a sample depends on its mass m (number of radioactive atoms) and the decay rate. Denoting the molar mass by μ and the Avogadro number by N_A one gets

$$A = \lambda N = \lambda \frac{m}{\mu} N_A = \frac{1}{\tau} \frac{m}{\mu} N_A \tag{4}$$

- This implies that small mass of short-lived isotopes may have the same activity as a large mass of long-lived isotopes.
- For example 1 MBq of tritium ($T_{1/2}$ =12.33 y) corresponds to 5.59 × 10¹⁴ or 1.1 [nmole] of atoms or 2.78 [ng] of mass
- 1 MBq of ¹⁴*C* ($T_{1/2}$ =5730 [y]) corresponds to 2.6×10¹⁷ or 0.43 [μ mole] of atoms or mass of 6 [μ g].

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ - 画 - のへ⊙

Detection efficiency

- Radiation detectors are built to detect decay products.
- As such detectors respond to activity.
- In a typical experiments number of counts N_C corresponding to detection of radiation of interest in a detector is recorded per unit of time. The units of N_C are counts per second.
- This number of counts is related to the activity by the response function of a detector ϵ called efficiency

$$N_C = \epsilon A \tag{5}$$

• Efficiency depends on the type and geometry of the detector, as well as type and energy of detected radiation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Activation analysis

• Tritium is produced in atmosphere by reaction of fast neutrons generated by cosmic rays with $^{14}{\it N}$

$$n + {}^{14} N \to {}^{12} C + {}^{3} H \tag{6}$$

January 19, 2011

15 / 34

- Tritium is then incorporated into water and remove from atmosphere as rain and snow.
- A 50 ml sample of water typically show 1 [dpm] (disintegration per minute) associated with the β⁻ decay of tritium to ³He. Based on that let us estimate number ratio of tritium to hydrogen in water.
- The number of tritium atoms in the sample is

$$N_{^{3}H} = \frac{1}{\lambda}A = \tau A = 12.33 \text{ [y]}*1 \text{ [1/min]} = 6.5 \times 10^{6} = 1.08 \times 10^{-17} \text{ [mole})$$
(7)

Activation analysis

• The number of tritium atoms in the sample is

$$N_{^3H} = rac{1}{\lambda}A = au A = 12.33 ext{ [y]*1 [1/min]} = 6.5 imes 10^6 = 1.08 imes 10^{-17} ext{ [mole]}$$

- The mass of the 50 ml sample is 50 g.
- The number of water molecules in the sample is

$$N_{H_2O} = \frac{m}{\mu} = \frac{50}{18.02} = 2.77 \text{ [mole]} = 16.7 \times 10^{23}$$
 (8)

• There are two hydrogen atoms per molecule, thus the tritium to hydrogen number ratio is

$$\frac{N_{^3H}}{N_{^1H}} = \frac{1.08 \times 10^{-17}}{5.54} = 2 \times 10^{-18} \tag{9}$$

• • • • • • • • • • • •

January 19, 2011

16 / 34

NUCS 342 (Lecture 4)

Independent decay of radioactive mixture

- Quite often radioactive samples are mixtures of radioactivities decaying at different rates.
- If the decay products from both samples are the same (for example electrons from β^- decay) a detector will see the combined decay of the mixture.
- In such cases a special care has to be taken if lifetimes are extracted. A common procedure is to extract parameters for the longest-lived activity first, subtract it from the data, analyze the next longest lived, etc.
- Currently this is done using computer fits.
- An example for a two-component mixture is analyzed below.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Independent decay of two radioactivities

$$N(t) = 70 \times \exp\left(-\frac{t}{\ln(2)1.5}\right) + 30 \times \exp\left(-\frac{t}{\ln(2)15}\right)$$

Independent decay of two radioactivities

$$N(t) = 70 \times \exp\left(-\frac{t}{\ln(2)1.5}\right) + 30 \times \exp\left(-\frac{t}{\ln(2)15}\right)$$

Decay chains

- Decay chains in which radioactive decay of an unstable isotope feeds radioactive decay of another unstable isotope are commonly encountered in nature and experimental nuclear science.
- For example, there are three naturally occurring, long-lived chains of α and β decays originating in the long-lived isotopes of ²³²Th ($T_{1/2}$ =14.1 Gy), ²³⁵U ($T_{1/2}$ =0.7 Gy) and ²³⁸U ($T_{1/2}$ =4.5 Gy).
- Another example is a sequence of β decay of unstable isotopes along the mass parabolas for a fixed mass number until the most stable isotope is reached.
- In case of the decay chain activities and abundances of radioactive isotopes are not independent. Rather, they are determined by the history of the decay: the decay rates and abundances in the preceding part of the chain.
- Thus the chain decay is different then independent decay of a mixture considered so far.
 NUCS 342 (Lecture 4)

^{235}U and ^{238}U chains

proto	Chart of the Nuclides Showing both the U235 and U238 Series																						
Ins	(The color of each nuclide indicate the half-life. For each color the half-life is measured in:) (less than a second, seconds, minutes, hours, days, years, over 10,000 years, Non Radioactive)																						
92											U 226	U 227	U 228	U 229	U 230	U 231	U 232	U 233	U 234	(U) (35)	U 236	U 237	U 238
91										Pa 224	Pa 225	Ра 226	Ра 227	Pa 228	Pa 229	Pa 230	Pa 231	P .32	P.	Pa 234	Pa 235	P.	Pa 237
90										Th 223	Th 224	Th 225	Th 226	Th 227	Th 228	29		(Ih) 231	Th 232	Th 233	Th 234	Th 235	Th 236
89	Ac 213	Ac 214	Ac 215					Ac 220	Ac 221	Ac 222	Ac 223	Ac 224	Ar 25	Ac 226	AC 227	Ar 28	Ac 229	Ac 230	Ac 231	Ac 232	Ac 233	Ac 234	Ac 235
88	Ra 212	Ra 213	Ra 214	Ra 215				Ra 219	Ra 220	Ra 221	Ra 222	Ra 223	Ra 224	P	Ra 226	Ra 227	Ra 228	Ra 229	Ra 230	Ra 231	Ra 232	Ra 233	Ra 234
87	Fr 211	Fr 212	Fr 213	Fr 214	Fr 215			Fr 218	Fr 219	Fr 220	21	Fr 222	Fr 223	Fr 24	Fr 225	Fr 226	Fr 227	Fr 228	Fr 229	Fr 230	Fr 231	Fr 232	Fr 233
86	Rn 210	Rn 211	Rn 212	Rn 213	Rn 214	Rn 215	Rn 216	Rn 217	Rn 218	(Rn) 219	Rn 220	Rn 221	Rn 222	Rn 223	Rn 224	Rn 225	Rn 226	Rn 227	Rn 228	Rn 229	Rn 230	Rn 231	Rn 232
85	At 209	At 210	At 211	At 212	At 213	At 214	At 215	At 216	AY 17	At 218	At 219	A1 20	At 221	At 222	At 223	At 224	At 225	At 226	At 227	At 228	At 229		
84	Po 208	Po 209	P0 210	Po 211	Po 212	Po 213	Po 214	(Po 215	Pr 16	Po 217	P0 218	Po 219	Po 220	Po 221	Po 222	Po 223	Po 224	Po 225	Po 226				
83	Bi 207	P/108	Bi 209	Bi	(Bi 211)	B'	P 13	Bi 214	Bi 215	B 16	Bi 217	Bi 218	Bi 219	Bi 220	Bi 221	Bi 222	Bi 223	Bi 224					
82	#		73	Pk 09	Pb 210	Pb 211	Pt 12	Pb 213	Pb 214	Pb 215	Pb 216	Pb 217	Pb 218	Pb 219	Pb 220								
81	205	TT 206	TI 207	TI 208	TI 209	210	TI 211	TI 212	TI 213	TI 214	TI 215	TI 216	TI 217										
	124 net	125 strons	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146

NUCS 342 (Lecture 4)

The Bateman equation

- The Bateman equation is a mathematical model describing abundances and activities in a decay chain as a function of time, based on the decay rates and initial abundances.
- The Bateman equation is not a single equation, rather it is a method of setting up differential equations describing the chain of interest based on its known properties.
- We are going to consider the simplest case with a parent feeding single daughter.
- Then by varying the parameters such as the decay rates and relative initial abundances we will investigate the chain evolution as a function of time.

Two-decay chain

- Let us denote
 - Initial number of parent and daughter atoms as $N_1(0)$ and $N_2(0)$
 - Number of parent and daughter atoms in time as $N_1(t)$ and $N_2(t)$
 - Parent and daughter activities in time as $A_1(t)$ and $A_2(t)$
 - Parent and daughter decay rates by λ_1 and λ_2
- The equation for the time evolution of the parent is the same as for a single step decay

$$\frac{dN_1(t)}{dt} = -\lambda_1 N_1(t) \tag{10}$$

• The equation for the time evolution of the daughter, however, includes a term describing daughter decay but also daughter feeding by the parent

$$\frac{dN_2(t)}{dt} = -\lambda_2 N_2(t) + \lambda_1 N_1(t)$$
(11)

イロト 不得下 イヨト イヨト 二日

January 19, 2011

23 / 34

Two-decay chain

• The solution of Eq. 10 is

$$N_1(t) = N_1(0) \exp\left(-\lambda_1 t\right) \tag{12}$$

• Taking this into account Eq. 11 become

$$\frac{dN_2(t)}{dt} = -\lambda_2 N_2(t) + N_1(0) \exp\left(-\lambda_1 t\right)$$
(13)

• The solution for $N_2(t)$ is

$$N_{2}(t) = N_{2}(0) \exp(-\lambda_{2}t) + - N_{1}(0) \frac{\lambda_{1}}{\lambda_{2} - \lambda_{1}} \left(\exp(-\lambda_{2}t) - \exp(-\lambda_{1}t) \right)$$
(14)

3

(日) (周) (三) (三)

Two-decay chain: abundance for a special case

Blue: parent $T_{1/2}=1.5$, $N_1(0) = 100\%$ Red: daughter $T_{1/2}=3$, $N_2(0) = 0\%$

Two-decay chain: abundances for a special case

Blue: parent $T_{1/2}=1.5$, $N_1(0) = 100\%$ Red: daughter $T_{1/2}=3$, $N_2(0) = 0\%$

Two-decay chain: activities

- Eqs 12 and 14 define abundances
- Activities of the parent and the daughter can be calculated from

$$A_{1}(t) = \lambda_{1}N_{1}(t) = \lambda_{1}N_{1}(0)\exp(-\lambda_{1}t)$$

$$A_{2}(t) = \lambda_{2}N_{2}(t) = \lambda_{2}N_{2}(0)\exp(-\lambda_{2}t) + (15)$$

$$- N_{1}(0)\frac{\lambda_{1}\lambda_{2}}{\lambda_{2} - \lambda_{1}}(\exp(-\lambda_{2}t) - \exp(-\lambda_{1}t))$$

< ロ > < 同 > < 三 > < 三

Two-decay chain: activities for a special case

Blue: parent $T_{1/2}=1.5$, $N_1(0) = 100\%$ Red: daughter $T_{1/2}=3$, $N_2(0) = 0\%$

NUCS 342 (Lecture 4)

```
January 19, 2011 28 / 34
```

Two-decay chain: activities for a special case

Blue: parent $T_{1/2}=1.5$, $N_1(0) = 100\%$ Red: daughter $T_{1/2}=3$, $N_2(0) = 0\%$

NUCS 342 (Lecture 4)

```
January 19, 2011 29 / 34
```

Decay branches

- Decay branches are observed when there is more than a single process for disintegration of the parent nucleus.
- For example, in the decay chain of 238 U 218 Po can α -decay to 214 Pb or β^- decay to 218 At.
- Another example is in the decay chain of ^{235}U with ^{227}Ac having an α branch to ^{223}Fr and a β^- decay branch to $^{227}\text{Th}.$
- Yet another example are decays of 235 U and 238 U by spontaneous fission which is a tiny, however, existing branch as compared to the dominating α decay.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Decay branches

^{235}U and ^{238}U chains

proto	Chart of the Nuclides Showing both the U235 and U238 Series																						
Ins –	(The color of each nuclide indicate the half-life. For each color the half-life is measured in:) (less than a second, seconds, minutes, hours, days, years, over 10,000 years, Non Radioactive)																						
92											U 226	U 227	U 228	U 229	U 230	U 231	U 232	U 233	U 234	635	U 236	U 237	
91										Pa 224	Pa 225	Ра 226	Ра 227	Pa 228	Pa 229	Pa 230	Pa 231	P .32	P-	Pa 234	Pa 235	P-	Pa 237
90										Th 223	Th 224	Th 225	Th 226	Th 227	Th 228	. 29	(Th 230)	(III) 231)	Th 232	Th 233	Th 234	Th 235	Th 236
89	Ac 213	Ac 214	Ac 215					Ac 220	Ac 221	Ac 222	Ac 223	Ac 224	A/ 25	Ac 226	AC 227	Ar 28	Ac 229	Ac 230	Ac 231	Ac 232	Ac 233	Ac 234	Ac 235
88	Ra 212	Ra 213	Ra 214	Ra 215				Ra 219	Ra 220	Ra 221	Ra 222	Ra 223	Ra 224	P_5	Ra 226	Ra 227	Ra 228	Ra 229	Ra 230	Ra 231	Ra 232	Ra 233	Ra 234
87	Fr 211	Fr 212	Fr 213	Fr 214	Fr 215			Fr 218	Fr 219	Fr 220	Z_1	Fr 222	Fr 223	Fr. 24	Fr 225	Fr 226	Fr 227	Fr 228	Fr 229	Fr 230	Fr 231	Fr 232	Fr 233
86	Rn 210	Rn 211	Rn 212	Rn 213	Rn 214	Rn 215	Rn 216	Rn 217	Rn 218	Rn 219	Rn 220	Rn 221	Rn 222	Rn 223	Rn 224	Rn 225	Rn 226	Rn 227	Rn 228	Rn 229	Rn 230	Rn 231	Rn 232
85	At 209	At 210	At 211	At 212	At 213	At 214	At 215	At 216	A7	At 218	At 219	A1/20	At 221	At 222	At 223	At 224	At 225	At 226	At 227	At 228	At 229		
84	Po 208	Po 209	Po 210	Po 211	Po 212	Po 213	Po 214	(Po 215	Pr 16	Po 217	P0 218	Po 219	Po 220	Po 221	Po 222	Po 223	Po 224	Po 225	Po 226				
83	Bi 207	.08	Bi 209	Bi 210	Bi 211	B'	P13	Bi 214	Bi 215	B'	Bi 217	Bi 218	Bi 219	Bi 220	Bi 221	Bi 222	Bi 223	Bi 224					
82	.		P /	Pk	Pb 210	Pb 211	Pr 12	Pb 213	Pb 214	Pb 215	Pb 216	Pb 217	Pb 218	Pb 219	Pb 220								
81	205	TT 206	207	TI 208	TI 209	TI 210	TI 211	TI 212	TI 213	TI 214	TI 215	TI 216	TI 217										
	124 net	125 strons	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146

NUCS 342 (Lecture 4)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○

Total decay rate and branching ratios

- For clarity, let us consider two competing branches in the decaying parent: an α and a β branch.
- The decay rates λ_{α} and λ_{β} define probability per unit time for disintegration by the respective process. The total probability for disintegration is

$$\lambda = \lambda_{\alpha} + \lambda_{\beta} \tag{16}$$

• Relative probability for each branch decay, called the branching ratio, is the ratio of the respective decay rate to the total decay rate

$$br_{\alpha} = \frac{\lambda_{\alpha}}{\lambda} = \frac{\lambda_{\alpha}}{\lambda_{\alpha} + \lambda_{\beta}}$$

$$br_{\beta} = \frac{\lambda_{\beta}}{\lambda} = \frac{\lambda_{\beta}}{\lambda_{\alpha} + \lambda_{\beta}}$$
(17)

(日) (周) (三) (三)

Lifetime and partial lifetimes

• The decay (without feeding) is defined by the total rate

$$\frac{dN(t)}{dt} = -\lambda N(t) = -(\lambda_{\alpha} + \lambda_{\beta})N(t) \Longrightarrow
N(t) = N(0) \exp(-\lambda t) = N(0) \exp(-(\lambda_{\alpha} + \lambda_{\beta})t) =
N(0) \exp(-\lambda_{\alpha} t) \exp(-\lambda_{\beta} t)$$
(18)

• Lifetime of the parent is defined by the total rate

$$au = \frac{1}{\lambda}$$
 (19)

(日) (同) (三) (三)

• Partial lifetimes for the decays are defined as

$$\tau_{\alpha} = \frac{1}{\lambda_{\alpha}}, \ \ \tau_{\beta} = \frac{1}{\lambda_{\beta}}$$
(20)

Lifetime and partial lifetimes

Note that while

$$\lambda = \lambda_{\alpha} + \lambda_{\beta} \tag{21}$$

and the total rate is dominated by the larger of λ_{α} , λ_{β} partial rates.

• For the lifetime and partial lifetimes this implies

$$\frac{1}{\tau} = \frac{1}{\tau_{\alpha}} + \frac{1}{\tau_{\beta}} \tag{22}$$

and the lifetime of the parent is dominated by the shorter partial lifetime.

It should be stressed that

$$\tau \neq \tau_{\alpha} + \tau_{\beta}$$

and that there is only one lifetime τ defining decay of the parent. Partial lifetimes can be extracted from measured branching ratios.

NUCS 342 (Lecture 4)