Measurement of B⁻delayed neutrons around the third r-process peak

ROGER CABALLERO FOLCH,

FRS User meeting 2011 - GSI, 28th November 2011

Setup	Analysis	Future goals			
Contents					
Introduction and astrophysics motivation					
Setup: FRS – SIMBA – BELEN					
Current analysis status and its outlook					
Summary and future goals					
	Setup Luction and astroph FRS – SIMBA – E t analysis status a ary and future go	SetupAnalysisuction and astrophysics motivationFRS – SIMBA – BELENt analysis status and its outlookary and future goals			

S410: Beta-decay measurements of new isotopes near the third r-process peak (N~126)

- Performed at GSI in September 2011 with a week of beam time
- Shared setup with S323 experiment

The measurements settings were centered on two isotopes: ²¹⁵Tl, ²¹¹Hg. We have preliminarily identified the following nuclei:

for the test of theoretical models.

Spill length ~1s with a period around 4s

Introduction

Implantation detector: SIMBA (Silicon Implantation Detector and Beta Absorber)

SIMBA detector

Front view

Multilayer silicon detector

Allows to measure both ion implants and β -decays.

Decay events can be correlated in time with the detection of neutrons.

^{9/14}

9/14

Introduction	Setup	Analysis	Future goals			
Analysis procedure (Preliminary plots / ongoing)						
Tracking detectors calibrations & particle ID Particle ID check via ²⁰⁵ Bi isomers, ²¹⁶ Po a-decays SIMBA calibration implantation patterns Analysis of half lives and Pn Digital data acquisition system features	²⁰⁵ Bi setting reference via as A/Q check	has been used as isomer gamma rays ing in the region of int	<figure></figure>			
			10/14			

Tracking detectors calibrations & particle ID

Particle ID check via ²⁰⁵Bi isomers,²¹⁶Po a-decays

> SIMBA calibration implantation patterns

> > Analysis of half lives and Pn

Digital data acquisition system features -Time correlation between neutron and beta decay

$$P_n = \frac{1}{\varepsilon_n} \frac{N_{n\beta}}{N_{\beta}}$$

-²⁵²Cf for BELEN efficiency and can be checked with

12/14

Analysis procedure (Preliminary plots / ongoing)

Tracking detectors calibrations & particle ID

Particle ID check via ²⁰⁵Bi isomers,²¹⁶Po a-decays

> SIMBA calibration implantation patterns

> > Analysis of half lives and Pn

Digital data acquisition system features

DDAS

-Triggerless digital data acquisition system used for the first time in this type of experiments at GSI.

-It allows to eliminate the dead time of conventional acquisition systems thanks to the double memory digital cards which allow to acquire data

and reading of previously taken data at the same time.

-Advantages:

- 1. Increase the efficiency by about 8% (from 27 to 35%)
- 2. Flexibility for large time correlation (fundamental to obtain correlations with all neutron and to change the gates offline)
- 3. Allows to correct some experimental effects, e.g. To reduce neutron background from uncorrelated neutrons.

Introduction	Setup	Analysis	Future goals
Outlook			

- Improved ID-Plot via final calibrations of frs detectors
- > Determine implantation rates for each identified isotope
- Determine implant-beta correlations and neutron-beta correlations

Implement an analysis method for deriving half-lifes and for determining beta-delayed neutron emission probabilities.

➢ In collaboration with theoreticians, study the impact of these results on nuclear models, as well as on r-process nucleosynthesis calculations.

Future goals

➤Upgrade of detector: up to 90 counters (detection efficiency ~70%): collaboration with Dubna

Combine with AIDA implantation detector (first separate tests in August 2011): talk Robert Page (Tue, 10:10)

➢Optimize detection system (BELEN) and its acquisition (DDAS) for future experiments with more exotic beams (FAIR).

Prepare for first experiments closer to the r-process path @FAIR/DESPEC (>2018)
Measure P_{xn}

The end!

Thanks to collaborators: Institut de Física Corpuscular de València (IFIC) Universitat Politècnica de Catalunya (UPC) Helmholtzzentrum für Schwerionenforschung GmbH (GSI) NSCL, Michigan State University (MSU-USA) CIEMAT (Madrid) Universidade de Santigo de Compostela (USC) Department of Physics, University of Surrey (UK) CFNUL Universidade de Lisboa (Portugal) School of Physics & Astronomy, U. Edinburgh (UK) Department of Physics, University of Liverpool (UK) STFC, Daresbury Laboratory (UK) Laboratori Nazionali di Legnaro, INFN (Italy) Flerov Laboratory, JINR, Dubna (Russia) CENBG, Université Bordeaux (France)

