Beam planning for test of Super-FRS detectors

Experiment S417 : Proposal for beam tests at the Fragment Separator FRS

Spokespersons : C. Nociforo¹ , H. Simon¹

T. Balog^{1,3}, K.-H. Behr¹, A. Brünle¹, A. Estrade¹, F. Farinon^{1,2}, F. Garcia⁴, H. Geissel^{1,2}, J. Gerl¹, R. Janik³, R. Gernhäuser⁵, C. Karagiannis¹, A. Kelic¹, B. Kindler¹, R. Knöbel¹, A. Kratz¹, J. Kurcewicz¹, B. Lommel¹, I. Mukha¹, S. Pietri¹, M. Pikna³, A. Prochazka^{1,2}, M.V. Ricciardi¹, C. Scheidenberger^{1,2}, B. Sitar³, P. Strmen³, I. Szarkna³, S. Terashima¹, M. Tomut¹, H. Weick¹, J. Winfield¹, M. Winkler¹, I. Wischert¹

¹ GSI, Darmstadt, Germany
 ² Justus-Liebig Universität Gießen, Gießen, Germany
 ³ Comenius University, Bratislava, Slovakia
 ⁴ Helsinki Institute of Physics, Helsinki, Finland
 ⁵ TU München, Garching, Germany

Beam time request for S417

The FRS due to its flexibility is the ideal site for developing optics modes, testing and commissioning equipments for the <u>Super-FRS</u> project.

Some tests already possible now are essential for developing the technical expertise and technology necessary for the Super-FRS.

Our request, in 2011-2012, was meant to have dedicated beam time as main user to test new components and prototypes needed for the future Super-FRS at FAIR

Approved shifts in 2011-2012 : 24 shifts (main) and 48 shifts (parasite)

Plan test in 2011-2012

Ion optical measurements

Test of high-rate capable detectors for the Super-FRS

- tracking: <u>GEM-TPC</u> detectors (in collab. with CUB & Helsinki)
- tracking & timing: diamond detectors (PCCVD) (in collab. with GSI lab & TUM)
- beam profile monitors (BPD) (in collab. with CUB)
- Test of the Super-FRS target wheel
 - characterization, background measurements, irradiation test
- Developing readout, controls and *fail-safe* operations concepts
 time-stamp synchronization (<u>BuTiS</u>) for the large scale

C. Nociforo, "GPAC meeting", November 2nd, 2010 – GSI, Darmstadt, Germany

Beam time request I (S417)

We ask <u>2.5 days</u> in April 2012 + <u>2.5 days</u> in October 2012 + additional parassitic beam time

- GEM-TPC prototype + n-XYTER (*CUB, Helsinki, GSI*)

- Large area diamond detector prototype (TU Münich, GSI)

We are as flexible as in 2011: we can run sharing 1:1 with another experiment

Beam time request II (S417)

We ask <u>3 days of U beam (6 shifts, day time only</u>), whenever the FRS target area can be set up and prepared for the Super-FRS target wheel + parassitic beam time

- Super-FRS target wheel: fuctionality and characterisation (absolute thickness, homogenity), background measurements

- graphite samples

It requires ${}^{238}U^{73+}$ fast-extracted beam at E_{SIS} =1 GeV/u (share 30-50%).

Ion optic tests are also required, crucial for running a succesful experimental program

C. Nociforo, "NUSTAR internal meeting", February 28, 2011 – GSI, Darmstadt, Germany

Required space on air : 1.5 m

Status report of FRS Expert Team

C. Nociforo on behalf of the Expert Team GSI, Darmastdt

• Activity in 2011

- role in the experiments
- technical developments

Expert Team activity

All FRS group members, including PhD students, have been strongly involved (see http://nustar-wiki.gsi.de/cgi-bin/view/FRS/ResponsiblePeople)

Main duty in 2011 was preparation and running of FRS experiments

- No FRS000 dedicated beam time assigned

- No lab space available due to internal restructuring

- Restricted budget

Activity in 2011

(supporting GSI experimental program)

In total: ~ 80 days

April-June

- S358 (FRS-Cave C)
- S377 (Prespec run)
- S395 (FRS-S4)

August-October

- S323/S410 (FRS-S4)
- S411 (FRS-S4)

Only one FRS-ESR experiment: E082.

MUSIC detector status

- The gas mixture P10 (4kV) was preferred to CF₄ (8kV)
- Larger number of MUSIC detectors is more often required (we have 3 available)

for A =205-208 $\begin{cases} \Delta Z = 0.4 \quad (TUM type) \\ \Delta Z = 0.65 \quad (old type) \end{cases}$

Munich is interesting in building a new detector (TUM type, 30 keuro)

• Towards higher counting rate (pile-up discrimination) ongoing data analysis (S. Pietri)

J. Winfield M. Takechi

TPC status

• Detectors available

- Four 200 x 60 mm², on air
- One 200 x 80 mm², on air
- Two 200 x 80 mm² in vacuum, not tested yet
- All TPC modules have internal passive delays

• Towards multi-hit data analysis (higher counting rate)

- One Twin (2-stacked)
- x and y control sums to distinguish multiple tracks
- → Tested during S395, grounding problems, new chamber under construction in Bratislava

• Calibrations tested at different wire voltages

 \rightarrow Offset and gain investigation

Xe : < 0.5 mm offset, $\Delta x/\Delta V=20\mu m/100V$ gain (@800 V)

C. Nociforo, FRS User Meeting 28 Nov 2011 CUB & A. Prochazka, C. Nociforo

Plastic scintillator status

Goal: improve ΔA resolution

- different configurations offline and online have been tested, different materials (EJ-232)
- \rightarrow there was no difference when the electronics was installed directly

in the cave, $\sigma_{ToF} = 30 \text{ ps}$ for ²⁰⁸Bi primary beam

Due to space limitation and increasing number of detectors a mirror plate was installed at S4 to shield the fringing field of the last quadrupole

DAQ for S323/S410

Isomer and α tagging

Other developments: GEM-TPC status

- Ongoing characterisation of the new electronics
- Integration of n-XYTER to GEM detector (CERN)
- Test of new GEM-TPC prototypes in April 2012

Helsinki, CUB & GSI

Conclusion

Change of several setups and configuration would not have been possible without the help of the FRS technical staff

In particular a special thank to *Jan Kurcewicz*, for his collaboration, strong support to the group and help during the last 4 years (*see his talk today at 15:45*). We enjoy a lot during the experiments and we regret that you are going to leave us. We wish you all the best !

