

Preparations for the first EXL experiment FRS-User Meeting, 28 November 2011

Spokesperson: N. Kalantar (KVI), Co-spokesperson: P. Egelhof (GSI), GSI contact: H. Weick (GSI)

We will update the collaboration list in the coming months

Detection systems for:

- \checkmark Target recoils and gammas (p, α ,n, γ)
- ✓ Forward ejectiles (p,n)
- ✓ Beam-like heavy ions

Design goals:

- ✓ Universality: applicable to a wide class of reactions
- ✓ Good energy and angular resolution
- ✓ Large solid angle acceptance
- ✓ Specially dedicated for low q measurements with high luminosity (> 10²⁸ cm⁻² s⁻¹)

Physics goals of the EXL program :

- Nuclear Matter Distributions along Isotopic Chains (ex. halo, skin structure) method: elastic proton scattering <u>at low q</u>:
 - ✓ Giant Monopole and Iso-Scalar Dipole Resonances (ex. nuclear compressibility) <u>method:</u> *inelastic* α *scattering* <u>*at low q*</u>

✓ **Gamow-Teller Transitions** (ex. weak interaction rates for N=Z waiting point nuclei) <u>method:</u> (³He,*t*), (*d*,²He) charge exchange reactions <u>at low q</u>

Accepted experiment (42 shifts) at the ESR with "scaled-down" EXL version: ⁵⁶Ni

✓ Nuclear Matter Distributions along Isotopic Chains: : ~10 MeV for θ_{lab} ~80-82°

Accepted experiment at the ESR with "scaled-down" EXL version: ⁵⁶Ni

- ✓ Nuclear Matter Distributions along Isotopic Chains: : ~10 MeV for θ_{lab} ~80-82°
- ✓ Giant Monopole and Iso-Scalar Dipole Resonances: 0.1→5 MeV for $\theta_{lab}=0$ →70°

Accepted experiment at the ESR with "scaled-down" EXL version: ⁵⁶Ni

- ✓ Nuclear Matter Distributions along Isotopic Chains: : ~10 MeV for θ_{lab} ~80-82°
- ✓ Giant Monopole and Scalar Dipole Resonances: 0.1→5 MeV for θ_{lab} =0→70°
- ✓ Gamow-Teller Transitions: 0.1→2 MeV for θ_{lab} =0→70°

- ✓ Nuclear Matter Distributions along Isotopic Chains: : ~10 MeV for θ_{lab} ~80-82°
- ✓ Giant Monopole and Scalar Dipole Resonances: 0.1→5 MeV for θ_{lab} =0→70°
- ✓ Gamow-Teller Transitions: 0.1→2 MeV for θ_{lab} =0→70°

Other experimental challenges

✓ Utlra high vacuum

- → "Active flanges" : DSSDs are used as buffer between HV and UHV areas;
- → target density and vacuum compatibility

✓ Half-life of the beam

- \rightarrow half-life of the radioactive ions (6 days in the case of ⁵⁶Ni);
- \rightarrow beam cooling \leftrightarrow multiple scattering in the dense target;

$\checkmark\,$ energy and angular resolution

- \rightarrow energy threshold on DSSDs ~ 100 keV minimal;
- → target size;

✓ vacuum solution with DSSDs [courtesy : B. Streicher (KVI/GSI) and M. Mutterer (GSI)]

p-side (21x21 mm²) DSSD 64x64 strips AIN PCB (ceramic – UHV) good heat conductivity < 5µm roughness after polishing

test setup : n-side facing auxiliary vacuum spring-pin connectors

rijksuniversiteit groningen

✓ vacuum solution with DSSDs [courtesy : B. Streicher (KVI/GSI) and M. Mutterer (GSI)]

 \checkmark existing chamber to be installed in the ESR

✓ mechanical design status [courtesy : M. Lindemuller (KVI)]

Spectral response unchanged after three baking cycles (to 200 °C)

E105 Arrangement at ESR

rijksuniversiteit groningen

Experiment E087

Breakout from the hot CNO cycles in X-ray bursters: determination of the ${}^{15}O(\alpha,\gamma){}^{19}Ne$ reaction rate via a transfer study on the ESR

PJ Woods, T Davinson, D Doherty, GJ Lotay (University of Edinburgh)

T Aumann, C Dimopolou, P Egelhof, R. Flag, H Geissel, M Heil, C Kozhuharov, J Kurcewicz, Y Litvinov,

M Mutterer, C Nociforo, F Nolden, B Pfeiffer, R Reifarth, B Riese, C Scheidenberger, H Simon, M Steck,

B Streicher, H Weick (GSI)

N Kalantar, C Rigollet (KVI)

S Bishop, T Faestermann, A Parikh (**TU Munich**)

B Davids (Triumf)

R Kanungo (St Mary's College, Halifax)

RC Lemmon (Daresbury Laboratory)

M Chartier (University of Liverpool)

U Datta Pramanik (Saha Institute of Nuclear Physics)

The ${}^{15}O(\alpha,\gamma){}^{19}Ne$ reaction: the nuclear trigger of X-ray bursts

The observation of X-ray bursts is interpreted as thermonuclear explosions in the atmosphere of a neutron star in a close binary system.

As temperature and density at the surface of the neutron star increase, the CNO cycles leak through the ${}^{15}O(\alpha, \gamma){}^{19}Ne$ reaction.

Reaction regulates flow between the hot CNO cycles and rp process \rightarrow critical for explanation of amplitude and periodicity of bursts

A NEW ESTIMATE OF THE ¹⁹Ne(p, γ)²⁰Na AND ¹⁵O(α , γ)¹⁹Ne REACTION RATES AT STELLAR ENERGIES

K. LANGANKE,¹ M. WIESCHER,² AND W. A. FOWLER W. K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena

AND

J. GÖRRES Department of Physics, University of Pennsylvania, Philadelphia Received 1985 May 24; accepted 1985 August 19

Rate dominated by a single 3/2⁺ resonance in ¹⁹Ne at 504 keV

Key experimental uncertainty, alpha branching ratio, $b_{\alpha} \sim 10^{-4}$

E087 Arrangement at ESR

- Using the same experimental setup as E105
- Reaction: ²⁰Ne(p, d)¹⁹Ne^{*} → ¹⁵O + α in inverse kinematics at 800 MeV (40 MeV/u)
- Shifts: 21

Plan for 2012

- First week of E105 with stable ⁵⁸Ni
- One week of E087 while understanding the first results of E105
- Second week of E105 with radioactive ⁵⁶Ni
- The same setup will be used for these experiments (target and detectors) making it very efficient.