Fission program at FRS / R3B status

CEA Bruyeres, GSI, Univ. Santiago Comp., Univ Vigo, IPN Orsay, CENBG, CEA Saclay, GANIL, Univ Chalmers

The experiment

- Comprehensive study of the fission process at medium and high excitation energy
 - Electromagnetic-induced fission of ²³⁸U and lighter short-lived actinides
 - Spallation-fission of ²⁰⁸Pb on ¹H (ANDES)
- The reverse kinematics at relativistic energies helps a lot
 - GSI is the only place worldwide where this is feasible

The experiment

- Pb+p system : study the fission dynamics at high excitation energy
- Actinides + Pb : survey the structure effects at low E*
- For both systems, we need to measure the same quantities:
 - (Z,A, Ekin) and count all fission fragments and neutrons in coincidence
- Beam-Time approved, 27 remaining shifts
- Experiment scheduled in summer 2012

2ndary beam ID

2ndary actinide beam ID

- 1st FRS/ Cave C experiment with actinides
- Selection of ²³⁸U fragmentation products at S0
 - U, Np, Th, ¹⁸⁰Hg
- 1st magnetic selection S0-S2 (rate 10⁵/s)
 - ToF + degrador
- 2nd magnetic selection, S2-Cave C
 - ToF, 2x tracking + 2x MUSIC (TUM)

Fission Fragment ID, Experimental technique

- COULEX-induced fission in an active Pb target
- Identification of all fission fragments
 - Measurement of Z, A and recoil energy
 - Can not be done anywhere else
- Classical Bp, ToF, ΔE method
 - Using a large acceptance magnet
- Neutron multiplicity

The cave C is the place where to proceed

The fission set up

The main difficulty : get the A

ALADIN is not strong :

- Low angular deflection
- Difficult to get the proper Brho resolution (1/300)

The angular straggling induces uncertainty

- Reduce the amount of material in beam
- Only gazeous detector (low Z gaz)
- flight-path totally in vacuum or Helium

Mass resolution, constraints

- Brho resolution : proper position resol.
 - 0.2mm FWHM on the 3 tracking meas.
- To get the A resolved : proper ToF resolution
 - 40 ps FWHM on 7m flightpath !!

If we meet those requirements, we should get the A resolved up to A=150

Detector technical choices : ToF

- Plastic-based ToF set-up (CEA Bruyeres)
 - Tough ToF reso. requested (40 ps FWHM)
 - Large ToF wall at the end of the set up
- Development started 3 ½ years ago
 - 6 test runs at our electron linac
 - 2 test runs at FRS in 2009/2010
 - 2 test run at cave C, june/september 2011
- Feasibility demonstrated on a prototype

ToF measurement for SOFIA

ToF prototype 2, U beam

ToF resolution : 17 ps FWHM

CEA/DAM

I- ToF measurement for SOFIA What we need :

ToF measurement for SOFIA

Actual ToF system, ¹²⁴Sn beam, june 2011

ToF resolution : 35 ps FWHM

ToF system

- Very high resolution ToF system defined
 - 35 ps resolution measured for heavy FF
 - In-line with our request
- Full tof wall assembled in may
- Tested in june and september

ToF electronics

- high resolution ToF ⇒ high resolution
 electronics needed
 - No TDC available on the market
- FPGA programmer hired to implement the wave union algorithm in a GSI VME module
- Perfect collaboration with EE department
 - TDC delivered in september
 - 8 ps RMS resolution measurement
 - Outstanding results

MWPC

- 2 detectors developed and built by IPN Orsay
 - 200 x 200 mm2 upstream ALADIN : delivered
 - 900 x 600 mm2 at final plane : expected in feb.
- Based on the Alice MWPCs
 - good tracking properties expected (200 um FWHM)
 - low material budget (angular straggling constraint)

General design

Resolution	vertical	2 mm
	horizontal	0,2 mm
Environment	pressure	atmospheric
Aluminum max	thickness	0,1 mm
Count rate	frequency	10⁵/s
Chamber 1	Active surface	200*200 mm2
Chamber 2	Active surface	900*600 mm2

Courtesy J. Peyre, IPN det. Lab.

Courtesy J. Peyre, IPN det. Lab.

MWPC 1, out of the box

MWPC1 resolution

measurement

MWPC tracking resolution : september run

MWPC conclusion

- MWPC concept validated
- Resolution of 140 microns FWHM measured
- Bigger detectors expected in feb
 - Need to be tested in a last test experiment
 - No big surprise expected

Detector technical : MUSIC

- Twin MUSIC chamber
 - Used to get the Z
 - Used as a high resolution tracker (drift time)
 - Dedicated gas Ne-CO2-CH4 to limit the ang.
 Str.
- Realised by GSI det. lab.
 - Completed in june 2011

Detector Assembly

Twin MUSIC, inner parts

Courtesy B. Voss, GSI det. Lab.

Orsay, October 7th 2011 SOFIA TwinMUSIC

Status

Twin MUSIC

- Tested in june and september
- Resolution of 3.5%FWHM /anode measured
- BUT Some sparks observed
 - Problem identified and solved in october
- Last test needed for final commisioning of the detector

Active target

Stack of ICs concept

Prototype design and built by CENBG may 2011

- Only 1 lead foil

Prototype tested in june

good performance : energy resolution of 8%
 FWHM

Final multi Pb foil active target built in august

Active target

Courtesy B. Jurado, CENBG

Active target prototype

Active target

Active target conclusion

- Detectors fully commissioned
- Ready to operate

Summary

- SOFIA is on good tracks
- Most detectors are ready
- Some needs a final validation
- We will be ready to run once a last test run will be completed