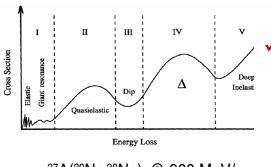
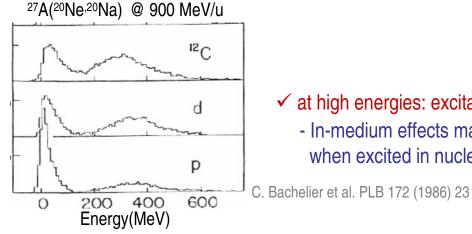
Charge and matter distributions from

isobar charge-exchange reactions

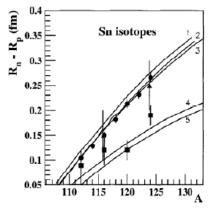
proposal s364 FRS run in June 2011

H. Alvarez, J. Atkinson, Y. Ayyad, T. Aumann, J. Benlliure, S. Beceiro, K. Boretzky, M. Caamaño,
D. Cortina, E. Casarejos, P. Diaz, A. Estrade, H. Geissel, A. Kelic, H. Lenske, Y. Litvinov,
M. Mostazo, C. Paradela, D. Perez, S. Pietri, A. Prochazka, M. Takechi, H. Weick, J. Winfield


Univ. Santiago de Compostela, GSI, Univ. Giessen

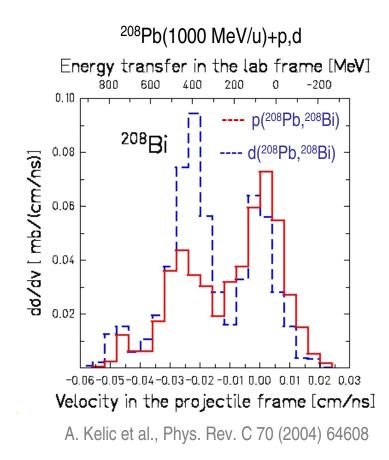


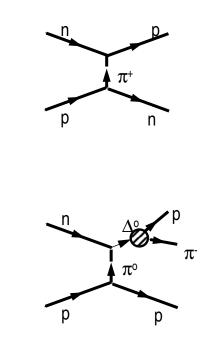
Motivation


Charge-exchange reactions are governed by the $V_{\sigma\tau}$ term in the nucleon-nucleon interaction so they are particularly interesting for investigating the spin-isopin dependence of the nuclear force. Moreover, some of these excitations have been proven to be sensitive to the radial distributions of protons and neutrons in the nucleus.

Charge-exchange reactions led to spin-isospin excitations in two different energy domains:

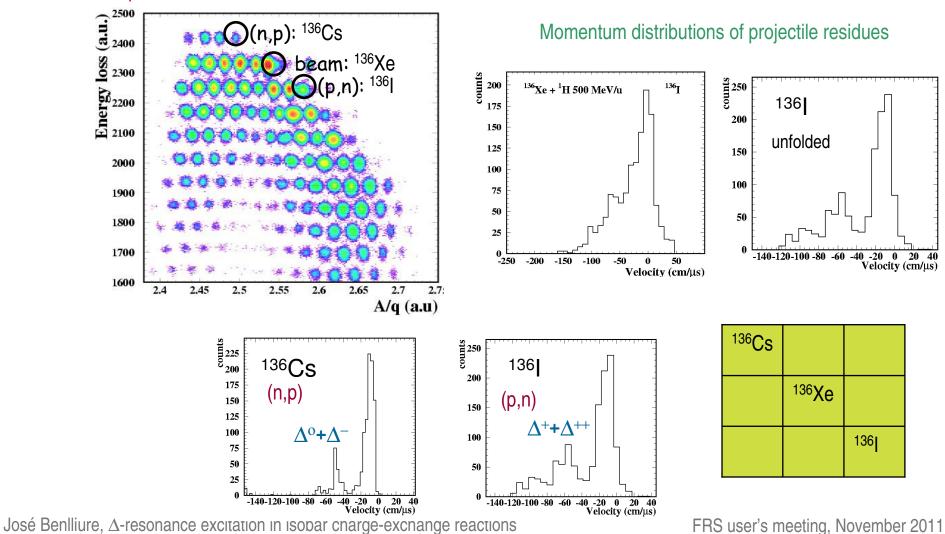
- ✓ at low energies: particle-hole excitations (Gamow-Teller, spin-dipole, spin- quadrupole or quasi-elastic).
 - Gamow-Teller: B_{GT} transition strengths
 - spin-dipole: radial distributions of protons and neutrons


A. Krasznahorkay et al. NPA 731 (2004) 224


✓ at high energies: excitation of a nucleon into a ∆ resonance
 - In-medium effects manifest as a downward shift of the ∆-peak position when excited in nuclei .

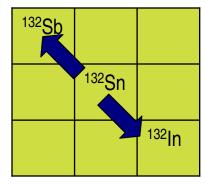
Motivation

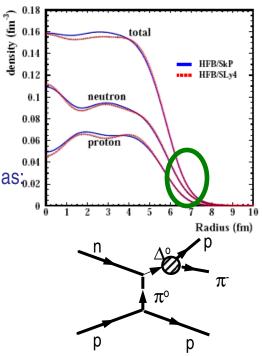
The FRS has proven to have the sufficient resolving power to disentangle quasi-elastic and Δ -resonant charge exchange reactions in peripheral heavy ion collisions at relativistic energies.



Motivation

Isotopic identification: ¹³⁶Xe+Be

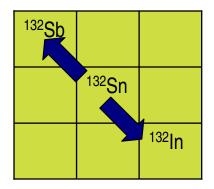

To investigate the isospin dependence of spin-isospin excitations at low and high momentum transfer for both isobar charge-exchange channels (p,n) and (n,p) using relativistic exotic projectiles.

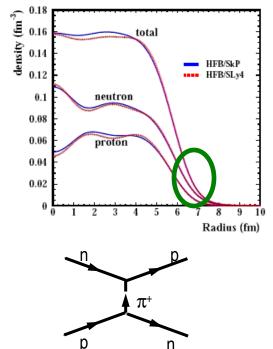

- \checkmark Radial distributions of neutron and protons. (Δ -resonant channel)
 - isobar charge-exchange: peripheral collisions
 - isobar (n,p) reactions: only projectile neutrons involved n-n or n-p \rightarrow proving projectil ρ_n
 - isobar (p,n) reactions: only projectile protons involved p-n or p-p \rightarrow proving projectile $\rho_{\rm p}$
 - $\Delta\text{-}\text{resonance}$ as a pion source: scattered pions as a probe

The charge-exchange cross sections can be obtained in the eikonal approximation as:

$$\sigma = 2\pi \int_{0}^{\infty} bP(b) db \qquad P(b) \propto \frac{1}{v_{a}^{2}} T(b) \sum_{m_{a},m_{b}} \left| \langle \Psi_{a} | V_{\sigma\tau} | \Psi_{b} \rangle \right|^{2}$$
S. Das et al. PRC 66 (2002) 014604
Matrix elements from real pion-nucleon scattering
$$\sum_{m_{a},m_{b}} \left| \langle \Psi_{a} | V_{\sigma\tau} | \Psi_{b} \rangle \right|^{2} \propto \left\langle \left| \Gamma_{\pi\alpha b} (q^{2}) \right|^{2} \right\rangle \left| \mathcal{G}_{\pi} (q^{2}) \right|^{2} \frac{|\mathbf{q}|}{\pi} \sigma_{\pi} (q^{2})$$
and the transparency $T(b) = \exp \left\{ -\sigma_{NN} \int_{-\infty}^{\infty} dz \int \rho_{P}(\mathbf{r}) \rho_{T}(\mathbf{R} + \mathbf{r}) d^{3}\mathbf{r} \right\}$ $\mathbf{R} = (b, z)$

José Benlliure, Δ -resonance excitation in isobar charge-exchange reactions

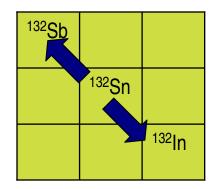

To investigate the isospin dependence of spin-isospin excitations at low and high momentum transfer for both isobar charge-exchange channels (p,n) and (n,p) using relativistic exotic projectiles.

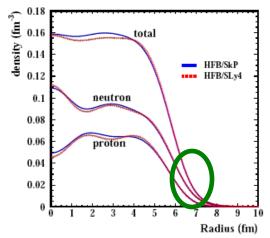

- \checkmark Radial distributions of neutron and protons. (Δ -resonant channel)
- ✓ Gamow-Teller transition strengths (quasi-elastic channel)
 - the proportionality between the charge exchange cross section at 0 degrees and the GT strength is stablished

$$P_{\pi,\rho}(b) \propto \frac{1}{v_a^2} T(b) \sum_{m_a,m_b} \left| \langle \Psi_a | V_{\sigma\tau} | \Psi_b \rangle \right|^2$$

C.A. Bertulani et al. NPA 674 (2000) 527

$$\sum_{m_a,m_b} \left| \langle \Psi_a | V_{\sigma\tau} | \Psi_b \rangle \right|^2 \propto B_{GT}(P \to P') B_{GT}(T \to T') \sum_{\nu} \left| H(\nu,b) \right|^2$$

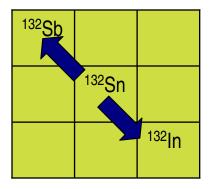


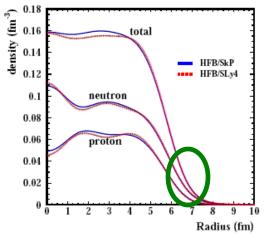

To investigate the isospin dependence of spin-isospin excitations at low and high momentum transfer for both isobar charge-exchange channels (p,n) and (n,p) using relativistic exotic projectiles.

- ✓ Radial distributions of neutron and protons. (Δ -resonant channel)
- ✓ Gamow-Teller transition strengths (quasi-elastic channel)

✓ In-medium properties of the Δ -resonance in isospin asymmetric nuclear matter. (mean energy and width of the Δ -resonance)

- Δ -resonance excitation in nuclei far from stability
- isovector component in the self-energy




To investigate the isospin dependence of spin-isospin excitations at low and high momentum transfer for both isobar charge-exchange channels (p,n) and (n,p) using relativistic exotic projectiles.

- ✓ Radial distributions of neutron and protons. (Δ -resonant channel)
- ✓ Gamow-Teller transition strengths (quasi-elastic channel)

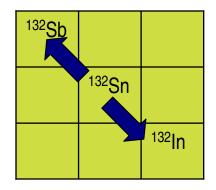
 \checkmark In-medium properties of the Δ -resonance in isospin asymmetric nuclear matter. (mean energy and width of the Δ -resonance)

- \checkmark Density dependence of the in-medium nucleon-nucleon cross section.
 - for nuclei with known radial distributions
 - key parameter in transport calculations used for investigating the symmetry energy using heavy-ion collisions.

Experimental requirements

Quasi-elastic and Δ -resonant isobar charge exchange reactions, (p,n) and (n,p), in isospin asymmetric nuclear matter:

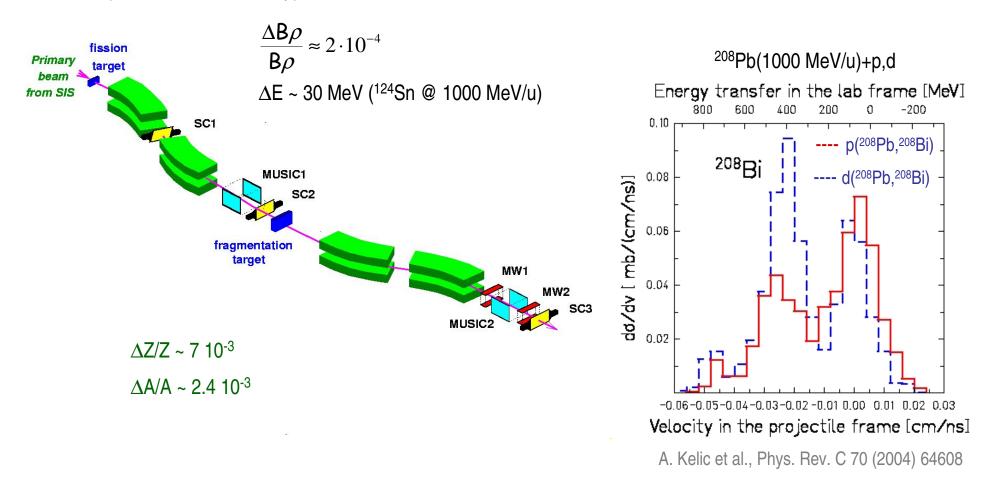
- relativistic heavy-ion collisions induced by exotic projectiles (isospin asymmetry and radial dependence)
- ✓ isobar charge-exchange (clean reaction channel)


Observables:

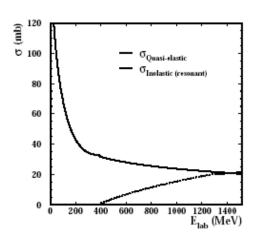
- \checkmark cross sections for both charge exchange reactions and channels
- \checkmark mean energy and width of the $\Delta\text{-resonance}$

Requirements for the setup:

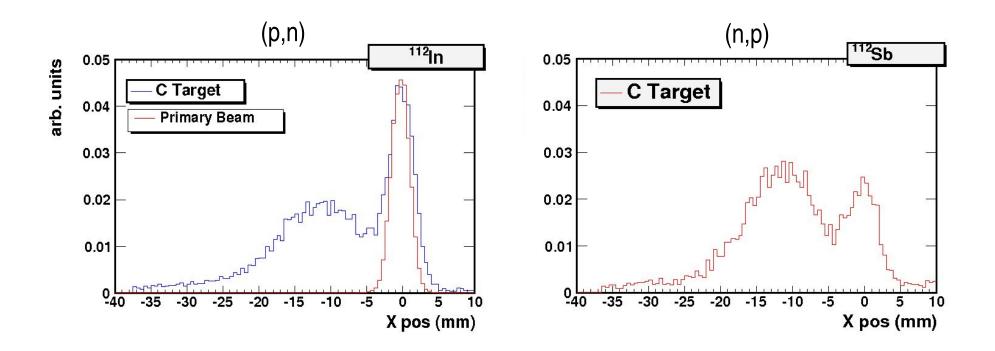
- ✓ isotopic identification of relativistic projectile residues
- ✓ separation of elastic and resonant charge-exchange channels
 - magnetic analysis of projectile residues



Experimental setup

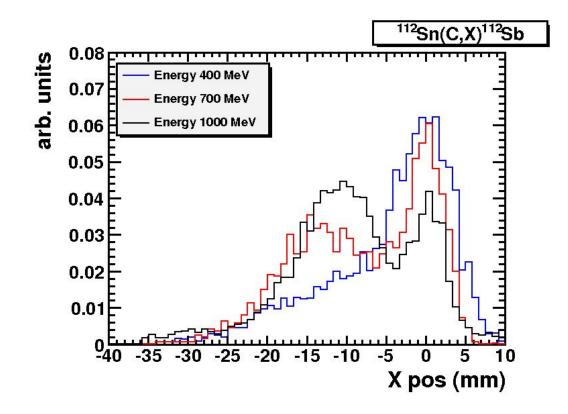

 Δ -resonance and quasi-elastic charge exchange reactions identified at the FRS: (standar detection setup)

Measurements



Reactions investigated:

- ✓ ¹²⁴Sn+CH₂,C \rightarrow ¹²⁴Sb, ¹²⁴In @ 1000 A MeV
- ✓ ¹²⁴Sn+Be → ¹¹⁸Sn+CH₂,C → ¹¹⁸Sb,¹¹⁸In @ 1000 A MeV
- ✓ ¹¹²Sn+CH₂,C,Cu,Pb → ¹¹⁸Sb,¹¹⁸In @ 400, 700, 1000 A MeV
- ✓ ¹¹²Sn+Be → ¹⁰⁹Sn+CH₂,C → ¹⁰⁹Sb,¹⁰⁹In @ 1000 A MeV



Preliminary results

Preliminary results

Preliminary results

