A/q Calculation

Everything is measured and calculated in the FRS section S2-S4. Different degraders are in front and cannot affect the identification procedure.

$$
\mathrm{A} / \mathrm{q}=\mathrm{B} \rho / \beta \gamma{ }^{*} \text { const. }
$$

with $\quad \gamma=\operatorname{sqrt}\left(1-\beta^{2}\right)$

$$
\beta=\mathrm{L} / \mathrm{ToF}
$$

and

$$
\mathrm{B} \rho=\mathrm{B} \rho_{0}[1+\delta]=\mathrm{B} \rho_{0}\left[1+\frac{\mathrm{x}_{\mathrm{s} 2}(\mathrm{x}, \mathrm{x})-\mathrm{x}_{\mathrm{S} 4}}{(\mathrm{x}, \delta)}\right]
$$

The path length (L) depends on $\mathrm{B} \rho$ and on transverse angle A. As this is a small correction, we can write it as a Taylor expansion with two factors still to be determined.

$$
\mathrm{L}=\mathrm{L}_{0} *\left(1+\mathrm{f}_{1} \delta\right)\left(1+\mathrm{f}_{2} \mathrm{~A}\right)
$$

The dependence on δ is small compared to the other contributions to A / q already contained in $\mathrm{B} \rho$ directly. In this first order approximation choosing slightly different optics coeffcients (x, x) or (x, δ) will already include the the path length correction for ToF for the final A/q calculation. Therefore, no separate coefficient f_{1} is neccessary.
The dependence on A is shown on the next slide. Corrections with X are tiny. As the FRS is in one plane Y and B constribute only in 2nd order.

Simulation for A/q Correction

MOCADI for ${ }^{222,223,224} \mathrm{Th}$ from ${ }^{238} \mathrm{U}$ at $1 \mathrm{GeV} / \mathrm{u}$, FRS in standard optics (RUN81-TA2B), $3 \mathrm{~g} / \mathrm{cm}^{2}$ Be target, $4 \mathrm{~g} / \mathrm{cm}^{2} \mathrm{~S} 2 \mathrm{Al}$ degrader. Correction proportional to angle A at S4, corrects path length for ToF.
monoenergetic

$\operatorname{aoq} *(1 .+\operatorname{gauss}(0.001))+(a(6)+\operatorname{gauss}(0.5)) * 0.00$

$\operatorname{aoq} *(1 .+\operatorname{gauss}(0.001))+(a(6)+\operatorname{gauss}(0.5)) * 0.0011$
achromatic

$\operatorname{aoq} *(1 .+\operatorname{gauss}(0.001))+(a(6)+\operatorname{gauss}(0.5)) * 0.00$

f_{1}

