

Overview of the BigRIPS separator

T. Kubo, RIKEN Nishina Center

Used for the production of rare isotope (RI) beams based on in-flight scheme

First of the next-generation in-flight separators

Collaborators:

K. Kusaka, A. Yoshida, K. Yoshida, N. Fukuda, H. Takeda, D. Kameda, M. Ohtake, Y. Yanagisawa, K. Tanaka, N. Inabe, and H. Suzuki (Ex members: T. Ohnishi, T. Haseyama, and Y. Mizoi)

References:

T. Kubo: Nucl. Instrum. Methods B 204 (2003) 97.
T. Kubo, et al. : IEEE Trans. Appl. Supercond. 17 (2007)1069.
T. Ohnishi, T. Kubo et al.: J. Phys. Soc. Jpn. 79 (2010) 073201.
T. Ohnishi, T. Kubo et al.: J. Phys. Soc. Jpn. 77 (2008) 083201.

May 23, 2010, EURICA symposium @RIKEN

Production reactions of RI beams at BigRIPS

Projectile fragmentation

• Abrasion-ablation model

• All kinds of fragments (RI beams) lighter than projectile can be produced.

In-flight fission (of ²³⁸U)

- Abrasion fission
 fission
 fission
 fission
 fission
 fission
 fission
 fission
 78Ni
 Output fission
 Signature
 fission
 fissin
 fission
 fission
 <p
- Very powerful for medium heavy neutron-rich isotopes

Layout and major features of BigRIPS separator

BigRIPS 1st stage

Radiation shields >7000 t

High-power target (Rotating disk target)

High-power beam dump

BigRIPS 2nd stage

Particle identification scheme at BigRIPS

TOF-B ρ - Δ **E** method with track reconstruction \rightarrow Improve B ρ and TOF resolution

Track reconstruction

Improve the particle identification power

For Z=40 isotopes produced by in-flight fission of a ²³⁸U beam at 345 MeV/u

Particle identification (PID) power for fission fragments

High enough to well identify charge states thanks to the track reconstruction!

r.m.s. A/Q resolution: 0.035 %

Example of two-stage separation at BigRIPS (1)

Remove charge state events

15 mm, F7x gate +-15 mm

Example of two-stage separation at BigRIPS (2)

Production of neutron-rich RI beams using a ⁴⁸Ca beam at 345 MeV/u

Production rates [pps/100pnA] (selected) ⁴⁸Ca + Be at 345 MeV/u

Ne, Mg, Si isotopes

Production rates [pps/200pnA] of very neutron-rich exotic nuclei

230pnA was achieved on Jun. 2010 for ⁴⁸Ca beam

Yields	s [pps/200pn/	٨]
	BigRIPS	RIPS (our old facility)
²² C	10 cps	0.006 cps
³⁰ Ne	1100 cps	0.2 cps
³¹ Ne	26 cps	20 counts/4days
³² Ne	7 cps	
³⁸ Mg	3 cps	
⁴¹ AI	1 cps	
⁴² Si	48 cps	. A
	iminé	ary:
	Preim	
	-	

Measured production cross sections and comparison with EPAX 2.15 (⁴⁸Ca 345 MeV/u + Be)

Cross section (mb)

Production of RI beams using in-flight fission of a ²³⁸U beam

Search for new isotopes using in-flight fission of a ²³⁸U beam at 345 MeV/u and ~0.22 pnA

Production rates of fission fragments and comparison with LISE++ simulation

Fairly well reproduced by LISE++ simulations

²³⁸U⁸⁶⁺345MeV/u + Be ²³⁸U⁸⁶⁺345MeV/u + Pb **Coulomb fission** Abrasion fission 10^{4} Even Z Even Z34 36 38 50 30 24 ^{26 28} 10² 48 52 46 48 10² 54 22 100 56 100 Z = 20Z = 46 $\begin{array}{c} \text{Counts} \text{s}^{-1} \text{pnA}^{-1} \\ \text{counts} \text{s}^{-1} \text{pnA}^{-1} \\ \text{cond} \text{c$ 7 Counts·s⁻¹·pnA 10-2 \^ 10^{-4} 10^{4} Odd Z31 33 35 37 39 41 43 45 51 Odd Z29 27 25 10² 23 55 100 Z = 2110⁰ 10-2 10-2 10^{-4} 10^{-4} 140 120 130 150 60 80 100 120 140 Α ASetting1: Z~30 Setting2: Z~40 Setting3: Z~50

LISE++(ver. 8.4.1)

Beam intensities at RIBF (from RIBF website)

Expected intensities (pnA) of E/A = 250, 320 and 345 MeV beams at RIBF in FY2010. Please note that these intensities depend on the situation of the beam development and the condition of the accelerator operation.

Particle	Energy(MeV/u)	Intensity(pnA)	
pol-d	250	120	
¹⁴ N	250	80	
⁴ He	320	1000	
⁴⁸ Ca	345	200	
⁸⁶ Kr	345	30	70Zn
¹²⁴ Xe	345	10	50pn
²³⁸ U	345	5	

Up-to-date primary beam intensities achieved so far

U beam : 0.8pnA (Dec. 2009) ⁴⁸Ca beam : 230pnA (Jun. 2010) pol. d (250 MeV/u) : 30nA, pol.~80%(April. 2009) ¹⁴N beam (250MeV/u) : (May, 2009) ¹⁸O beam (345 MeV/u) 1000pnA (Jun. 2010) Thank you for your attention.

LISE++ abrasion-fission model: for deducing cross sections

Three excitation energy regions (3 EERs) method

- Low excitation region: fission barrier $< E^* < 40$ MeV
- Middle excitation region: 40 MeV < E^* < 180 MeV
- High excitation region: 180 MeV < E^*

Parameters for ²³⁸U + Be

	Low	Middle	High
fissile	²³⁶ 92U	²²⁶ 90Th	²²⁰ 84Ra
<i>E</i> * MeV	23.5	100	250
σmb	200	500	350

Parameters for ²³⁸U + Pb

	Low	Middle	High
fissile	²³⁸ 92	²³⁰ 90Th	²¹⁴ 84Po
<i>E</i> * MeV	17.3	100	300
σ mb	2280*	500	1300

* includes coulomb fission cross section

Oleg Tarasov & Daniel Bazin

The parameters here are the standard ones in the LISE++ manual, and determined so as to fit the GSI cross section data.

