Review of the (Physics from the) Stopped RISING Campaign: $(2001 \rightarrow 2006 \rightarrow 2011)$

Paddy Regan University of Surrey Guildford GU2 7XH

<u>RISING</u>

<u>R</u>are <u>Isotopic Spectroscopic</u> <u>INvestigations</u> (\underline{a} <u>GSI</u> = 15 x Cluster germaniums for (the most) exotic gamma-ray spectroscopy

The RISING Project

Letter of Intent

G. de Angelis, J. Gerl, H. Grawe, P. Regan, P.Reiter and

H.-J. Wollersheim

On behalf of the RISING Steering Committee representing the RISING collaboration

June 2001

Stopped RISING Physics workshop; University of Surrey, Mar. 2004.

Stopped RISING Data - Analysers:

¹⁰⁷Ag, N=Z: Adam Garnsworthy

136Xe, N=82 130Cd: Lucia Caceres GSI) ; Farheen Naqvi (GSI/Koln) ²⁰⁸Pb, N=126, ¹⁹⁰W: Steve Steer, Greg Farrelly

N~128 Michael Bowry, N.Al-Dahan

Stopped RISING Spokespersons:

Passive Stopper ⁵⁸Ni, A=54 mirrors: D. Rudolph

¹⁰⁷Ag, N=Z: P.H. Regan
 ²⁰⁸Pb, N=126: Zs. Podolyak
 ¹³⁶Xe, N=82 ¹³⁰Cd: A. Jungclaus
 ²³⁸U, A~110 fission A. Bruce,

Neutron-rich Pb: Javier Valiente (Legnaro)

Active Stopper

²⁰⁸Pb, ~¹⁹⁰W, N=126, : P. Regan, J. Benlliure
 ⁵⁴Fe, T_z=-1: B. Rubio, Y. Fujita, W.Gelletly
 ⁶²Ga: A. Gadea, A.Algora
 ²³⁸U: Z. Podolyak

Set-up:

Stephane Pietri (Surrey/GSI),

Henning Schaffner (GSI),

I. Kojouharov (GSI), H.J. Wollersheim (GSI)

Passive Stopper measurements: γ -rays from isomer with $T_{1/2}$ for 10 ns \rightarrow 1 ms.

Active Stopper measurements: β –particles, i.c. electrons. Two ms \rightarrow mins

What do isomeric decays tell you about nuclear structure ?

Decay spectroscopy. How quickly something decays....

2011

Decay spectroscopy. How quickly something decays....

2011

BENTLEY MA

1985

$$T_{fi}(\lambda L) = \frac{8\pi (L+1)}{\hbar L \left((2L+1)!! \right)^2} \left(\frac{E_{\gamma}}{\hbar c} \right)^{2L+1} B(\lambda L : J_i \to J_f)$$

$$T_{fi}(\lambda L) = \frac{8\pi (L+1)}{\hbar L \left((2L+1)!! \right)^2} \left(\frac{E_{\gamma}}{\hbar c} \right)^{2L+1} B(\lambda L : J_i \to J_f)$$

Transition probability (i.e., 1/mean lifetime as measured for state which decays by EM radiation)

$$T_{fi}(\lambda L) = \frac{8\pi (L+1)}{\hbar L \left((2L+1)!! \right)^2} \left(\frac{E_{\gamma}}{\hbar c} \right)^{2L+1} B(\lambda L : J_i \to J_f)$$
(trivial) gamma-ray
(trivial) gamma-ray

Transition probability (i.e., 1/mean lifetime as measured for state which decays by EM radiation) (trivial) gamma-ray energy dependence of transition rate, goes as. $E_{\gamma}^{2L+1} e.g., E\gamma^5$ for E2s for example.

The all important nuclear structure Information. The 'reduced matrix element' tells us what the overlap between the initial and final nuclear quantum states is.

$$T_{fi}(\lambda L) = \frac{8\pi (L+1)}{\hbar L \left((2L+1)!! \right)^2} \left(\frac{E_{\gamma}}{\hbar c} \right)^{2L+1} B(\lambda L : J_i \to J_f)$$

Transition probability (i.e., 1/mean lifetime as measured for state which decays by EM radiation) (trivial) gamma-ray energy dependence of transition rate, goes as. $E_{\gamma}^{2L+1} e.g., E\gamma^5$ for E2s for example.

(Some) Stopped RISING Physics Highlights

- <u>N~Z (proton-rich) nuclei & mirror symmetry</u>
 - Shell Structure and mirror symmetries at N ~ Z ~ 28:
 - ${}^{54}Ni_{26}$ core excitation and proton radioactivity
 - T=1 and T=0 pn-pairing studies at the proton drip-line:
 - ⁸²Nb & ⁸⁶Tc isomers feeding T=1 ground state structures.
 - GT decay studies between T=1 triplets (Z=N-2 \rightarrow Z=N)
 - ⁴⁶Cr \rightarrow ⁴⁶V; ⁵⁰Cr \rightarrow ⁵⁰Mn; ⁵⁴Ni \rightarrow ⁵⁴Co; ⁶²Ge \rightarrow ⁶²Ga
 - Shell model structure around N=Z=50 100 Sn
 - Seniority isomers & core excitations: ⁹⁴Pd₄₈, ⁹⁶Ag₄₉ and ⁹⁸Cd₅₀,
 - Beta-decay of ¹⁰⁰Sn
 - Seniority isomer decay in ¹⁰²Sn

Stopped RISING Physics Highlights

• Heavy, neutron-rich nuclei

- Z=50, N=82 (132 Sn): Shell model studies:

- ¹³⁰Cd₈₂ seniority isomer structure
- 131 In₈₂ core-excitation isomers (to establish the N=82 gap size)
- Isomeric and other shell model structures in ¹²⁵⁻¹²⁸Cd
- Structural evolution and decay half-lives
 - Beta-decay and half-lives of fission fragments around ¹⁰⁶Zr
 - Beta-decay and half-lives from triaxial $^{190}\mathrm{W}$ up to $N{\sim}126$
- Z=82, N=126 (²⁰⁸Pb): Shell model studies
 - N=126, proton-hole isomers ²⁰³In, ²⁰⁴Pt, ²⁰⁵Au
 - N>128, Z<82 quadrant: first states in ²⁰⁸Hg₁₂₈, ²⁰⁹Tl₁₂₈
 - ^{212,214,216}Pb seniority isomers

<u>Experiment</u>	<u>Spokespersons</u>	<u>Dates</u>	Publication
1. S244: ¹⁰⁷ Ag beam; N=Z isomers	Regan	25 Feb –1 Mar 06	A.B. Garnsworthy et al., PL <u>B660</u> (2008) 326
			A.B. Garnsworthy et al., PR <u>C80</u> (2009) 064303
2. S299; ²⁰⁸ Pb beam N~126 isomers	Podolyak	2 Mar – 8 Mar 06	S.J. Steer et al., PR <u>C78</u> (2008) 061302(R);
			Zs. Podolyak et al., PR <u>C79</u> (2009) 031305(R);
			Zs. Podolyak et al., PR <u>C79</u> (2009) 031305 (R)
			E.C. Simpson PR <u>C80</u> (2009) 064608
			Zs. Podolyak et al., EPJ <u>A42</u> (2009) 489
			S.J.Steer et al., IJMP <u>E18</u> (2009) 1002
3. S244: ⁵⁸ Ni beam; A=54 mirrors	Rudolph	9 Mar –12 Mar 06	D. Rudolph et al., PR <u>C78</u> (2008) 021301(R) ;. Rudolph et al., EPJ <u>A36</u> (2008) 131.
4. S305: ¹³⁶ Xe beam. N~82 isomers	Jungclaus	26 Jun – 9 July 06	A. Jungclaus et al. PRL <u>99</u> (2007) 132501
5. S244: ²³⁸ U beam. Isomers at N~82	Pfutzner / Gorska	10 Jul – 7 Jul 06	L. Caceres et al., PR <u>C79</u> (2009) 011301 (R);
			M. Gorska et al., PL <u>B672</u> (2009) 313.
6. S300; ²³⁸ U beam: A~110 isomers	Bruce	11 Dec – 7 Dec 06	
7. S313: ²⁰⁸ Pb beam active.; N→126	Regan / Benlliure	8 Mar -18 Mar 07	Zs. Podolyak et al., PL <u>B672</u> (2009) 116;
			N. Alkhomashi et al., PR <u>C80</u> (2009) 064308
8. S313: ²⁰⁸ Pb beam active. N \rightarrow 126	Benlliure / Regan	8 Jul –17 July 07	P.H. Regan et al., IJMP <u>E17</u> (2008) 8;
			A.I. Morales et al., Acta Phys. <u>B40</u> (2009) 867
9. S326: ⁷⁸ Kr beam, GT in A=62	Gadea / Algora	18 Jul – 25 Jul 07	
10. S316: ⁵⁸ Ni beam; GT A=46:50:54	Fujita / Gelletly / Rubio	27 July –1 Aug 07	
11.S330: ¹²⁴ Xe beam: ¹⁰⁰ Sn + SIMBA	Faestermann / Gorska	5 Mar – 26 Mar 08	
12. S347: ²³⁸ U beam; Z<82; N>126	Podolyak	27 Apr – 3 May 08	N.Al-Dahan et al., PR <u>C80</u> (2009) 061302 (R)
13. S352: ¹²⁴ Xe beam; ^{96,8} Pd	Blazhev / Wadsworth /	5 Jun – 13 Jun 08	R Wadsworth et al., Acta Phys <u>B40</u> (2009) 611
	Liu / Boutachkov		A <u>Blazhov at al</u> <u>I Dhy Conf</u> 205 (2010)
14 S361: 23811 beam 104 67r	Bruco	17 Sen 20 Sen 00	16 successiul experiments)
	Bluce	17 Sep -20 Sep 09	

How it actually turned out....lots of nice (initial) conference

Some more 'high profile' publications....

PHYSICAL REVIEW C 78, 021301(R) (2008)

Isospin symmetry and proton decay: Identification of the 10⁺ isomer in ⁵⁴Ni

D. Rudolph,¹ R. Hoischen,^{1,2} M. Hellström,¹ S. Pietri,³ Zs. Podolyák,³ P. H. Regan,³ A. B. Garnsworthy,^{3,4} S. J. Steer,³
F. Becker,^{2,*} P. Bednarczyk,^{2,5} L. Cáceres,^{2,6} P. Doornenbal,^{2,7,†} J. Gerl,² M. Górska,² J. Grębosz,^{2,5} I. Kojouharov,² N. Kurz,²
W. Prokopowicz,^{2,5} H. Schaffner,² H. J. Wollersheim,² L.-L. Andersson,¹ L. Atanasova,⁸ D. L. Balabanski,^{8,9} M. A. Bentley,¹⁰
A. Blazhev,⁷ C. Brandau,^{2,3} J. R. Brown,¹⁰ C. Fahlander,¹ E. K. Johansson,¹ A. Jungclaus,⁶ and S. M. Lenzi¹¹

RAPID COMMUNICATIONS

PHYSICAL REVIEW C 79, 011301(R) (2009)

Spherical proton-neutron structure of isomeric states in ¹²⁸Cd

L. Cáceres,^{1,2,*} M. Górska,¹ A. Jungclaus,^{2,3} M. Pfützner,⁴ H. Grawe,¹ F. Nowacki,⁵ K. Sieja,¹ S. Pietri,^{6,†} D. Rudolph,⁷ Zs. Podolyák,⁶ P. H. Regan,⁶ E. Werner-Malento,^{4,‡} P. Detistov,^{8,§} S. Lalkovski,^{8,9} V. Modamio,² J. Walker,² K. Andgren,¹⁰ P. Bednarczyk,^{1,11} J. Benlliure,¹² G. Benzoni,¹³ A. M. Bruce,⁹ E. Casarejos,¹² B. Cederwall,¹⁰ F. C. L. Crespi,¹³ P. Doornenbal,^{1,14,||} H. Geissel,¹ J. Gerl,¹ J. Grębosz,^{1,11} B. Hadinia,¹⁰ M. Hellström,⁷ R. Hoischen,^{1,7} G. Ilie,^{14,15} A. Khaplanov,¹⁰ M. Kmiecik,¹¹ I. Kojouharov,¹ R. Kumar,¹⁶ N. Kurz,¹ A. Maj,¹¹ S. Mandal,¹⁷ F. Montes,^{1,¶} G. Martínez-Pinedo,¹ S. Myalski,¹¹ W. Prokopowicz,¹ H. Schaffner,¹ G. S. Simpson,¹⁸ S. J. Steer,⁶ S. Tashenov,¹ O. Wieland,¹³ and H. J. Wollersheim¹

PRL 99, 132501 (2007)

PHYSICAL REVIEW LETTERS

week ending 28 SEPTEMBER 2007

Observation of Isomeric Decays in the r-Process Waiting-Point Nucleus ¹³⁰Cd₈₂

A. Jungclaus,¹ L. Cáceres,^{1,2} M. Górska,² M. Pfützner,³ S. Pietri,⁴ E. Werner-Malento,³ H. Grawe,² K. Langanke,²
G. Martínez-Pinedo,² F. Nowacki,⁵ A. Poves,¹ J. J. Cuenca-García,² D. Rudolph,⁶ Z. Podolyak,⁴ P. H. Regan,⁴ P. Detistov,⁷
S. Lalkovski,^{8,7} V. Modamio,¹ J. Walker,¹ P. Bednarczyk,^{2,9} P. Doornenbal,² H. Geissel,² J. Gerl,² J. Grebosz,^{2,9}
I. Kojouharov,² N. Kurz,² W. Prokopowicz,² H. Schaffner,² H. J. Wollersheim,² K. Andgren,¹⁰ J. Benlliure,¹¹ G. Benzoni,¹²
A. M. Bruce,⁸ E. Casarejos,¹¹ B. Cederwall,¹⁰ F. C. L. Crespi,¹² B. Hadinia,¹⁰ M. Hellström,⁶ R. Hoischen,^{6,2} G. Ilie,^{13,14}
J. Jolie,¹³ A. Khaplanov,¹⁰ M. Kmiecik,⁹ R. Kumar,¹⁵ A. Maj,⁹ S. Mandal,¹⁶ F. Montes,² S. Myalski,⁹ G. S. Simpson,¹⁷
S. J. Steer,⁴ S. Tashenov,² and O. Wieland¹²

RAPID COMMUNICATIONS

PHYSICAL REVIEW C 79, 031305(R) (2009)

Weakly deformed oblate structures in ¹⁹⁸/₇₆Os₁₂₂

Zs. Podolyák,^{1,*} S. J. Steer,¹ S. Pietri,¹ F. R. Xu,² H. L. Liu,² P. H. Regan,¹ D. Rudolph,³ A. B. Garnsworthy,^{1,4} R. Hoischen,^{3,5} M. Górska,⁵ J. Gerl,⁵ H. J. Wollersheim,⁵ T. Kurtukian-Nieto,⁶ G. Benzoni,⁷ T. Shizuma,^{1,8} F. Becker,⁵ P. Bednarczyk,^{5,9} L. Caceres,^{5,10} P. Doornenbal,⁵ H. Geissel,⁵ J. Grębosz,^{5,9} A. Kelic,⁵ I. Kojouharov,⁵ N. Kurz,⁵ F. Montes,⁵ W. Prokopowicz,^{5,9} T. Saito,⁵ H. Schaffner,⁵ S. Tashenov,⁵ A. Heinz,⁴ M. Pfützner,¹¹ A. Jungclaus,¹⁰ D. L. Balabanski,¹² C. Brandau,¹ A. M. Bruce,¹³ W. N. Catford,¹ I. J. Cullen,¹ Zs. Dombrádi,¹⁴ E. Estevez,⁶ W. Gelletly,¹ G. Ilie,¹⁵ J. Jolie,¹⁵ G. A. Jones,¹ M. Kmiecik,⁹ F. G. Kondev,¹⁶ R. Krücken,¹⁷ S. Lalkovski,¹³ Z. Liu,¹ A. Maj,⁹ S. Myalski,⁹ S. Schwertel,¹⁷ P. M. Walker,¹ E. Werner-Malento,^{5,18} and O. Wieland⁷

and some more ...

and some more... 4 in Dec '09 PRC

PHYSICAL REVIEW C 80, 064308 (2009)

β^- -delayed spectroscopy of neutron-rich tantalum nuclei: Shape evolution in neutron-rich tungsten isotopes

N. Alkhomashi,^{1,*} P. H. Regan,¹ Zs. Podolyák,¹ S. Pietri,¹ A. B. Garnsworthy,¹ S. J. Steer,¹ J. Benlliure,² E. Caserejos,²
R. F. Casten,³ J. Gerl,⁴ H. J. Wollersheim,⁴ J. Grebosz,⁵ G. Farrelly,¹ M. Górska,⁴ I. Kojouharov,⁴ H. Schaffner,⁴ A. Algora,^{6,7}
G. Benzoni,⁸ A. Blazhev,⁹ P. Boutachkov,⁴ A. M. Bruce,¹⁰ A. M. Denis Bacelar,¹⁰ I. J. Cullen,¹ L. Cáceres,⁴ P. Doornenbal,⁴
M. E. Estevez,² Y. Fujita,¹¹ W. Gelletly,¹ R. Hoischen,^{4,12} R. Kumar,¹³ N. Kurz,⁴ S. Lalkovski,¹⁰ Z. Liu,¹⁴ C. Mihai,¹⁵
F. Molina,⁶ A. I. Morales,² D. Mücher,⁹ W. Prokopowicz,⁴ B. Rubio,⁶ Y. Shi,¹⁶ A. Tamii,¹⁷ S. Tashenov,⁴
J. J. Valiente-Dobón,¹⁸ P. M. Walker,¹ P. J. Woods,¹⁴ and F. R. Xu¹⁶

RAPID COMMUNICATIONS

PHYSICAL REVIEW C 80, 061302(R) (2009)

Nuclear structure "southeast" of ²⁰⁸Pb: Isomeric states in ²⁰⁸Hg and ²⁰⁹Tl

N. Al-Dahan,^{1,2} Zs. Podolyák,^{1,*} P. H. Regan,¹ M. Górska,³ H. Grawe,³ K. H. Maier,⁴ J. Gerl,³ S. B. Pietri,³ H. J. Wollersheim,³ N. Alkhomashi,¹ A. Y. Deo,¹ A. M. Denis Bacelar,⁵ G. Farrelly,¹ S. J. Steer,¹ A. M. Bruce,⁵ P. Boutachkov,³ C. Domingo-Pardo,³ A. Algora,^{6,7} J. Benlliure,⁸ A. Bracco,⁹ E. Calore,¹⁰ E. Casarejos,⁸ I. J. Cullen,¹ P. Detistov,¹¹ Zs. Dombrádi,⁷ M. Doncel,¹² F. Farinon,³ W. Gelletly,¹ H. Geissel,³ N. Goel,³ J. Grebosz,⁴ R. Hoischen,^{3,13} I. Kojouharov,³ N. Kurz,³ S. Lalkovski,⁵ S. Leoni,¹⁴ F. Molina,⁶ D. Montanari,⁹ A. I. Morales,⁸ A. Musumarra,^{3,15} D. R. Napoli,¹⁰ R. Nicolini,⁹ C. Nociforo,³ A. Prochazka,³ W. Prokopowicz,³ B. Rubio,⁶ D. Rudolph,^{3,13} H. Schaffner,³ P. Strmen,¹⁶ I. Szarka,¹⁶ T. Swan,¹ J. S. Thomas,¹ J. J. Valiente-Dobón,¹⁰ S. Verma,⁸ P. M. Walker,¹ and H. Weick³

PHYSICAL REVIEW C 80, 064303 (2009)

Isomeric states in neutron-deficient $A \sim 80$ –90 nuclei populated in the fragmentation of ¹⁰⁷Ag

A. B. Garnsworthy,^{1,2,*} P. H. Regan,¹ S. Pietri,¹ Y. Sun,³ F. R. Xu,⁴ D. Rudolph,⁵ M. Górska,⁶ L. Cáceres,^{6,7} Zs. Podolyák,¹ S. J. Steer,¹ R. Hoischen,^{5,6} A. Heinz,² F. Becker,⁶ P. Bednarczyk,^{6,8} P. Doornenbal,⁶ H. Geissel,⁶ J. Gerl,⁶ H. Grawe,⁶ J. Grębosz,^{6,8} A. Kelic,⁶ I. Kojouharov,⁶ N. Kurz,⁶ F. Montes,⁶ W. Prokopwicz,⁶ T. Saito,⁶ H. Schaffner,⁶ S. Tachenov,⁶ E. Werner-Malento,^{9,†} H. J. Wollersheim,⁶ G. Benzoni,¹⁰ B. Blank,¹¹ C. Brandau,¹ A. M. Bruce,¹² F. Camera,¹⁰
W. N. Catford,¹ I. J. Cullen,¹ Zs. Dombrádi,¹³ E. Estevez,¹⁴ W. Gelletly,¹ G. Ilie,^{15,16} J. Jolie,¹⁵ G. A. Jones,¹ A. Jungclaus,^{7,17} M. Kmiecik,⁸ F. G. Kondev,¹⁸ T. Kurtukian-Nieto,¹⁴ S. Lalkovski,^{12,19} Z. Liu,¹ A. Maj,⁸ S. Myalski,⁸ M. Pfützner,⁹ S. Schwertel,²⁰ T. Shizuma,^{1,21} A. J. Simons,^{1,22} P. M. Walker,¹ and O. Wieland¹⁰

PHYSICAL REVIEW C 80, 064608 (2009)

Population of low-seniority isomeric states of ²⁰⁶Hg by two-proton knockout reactions at relativistic energies

E. C. Simpson, J. A. Tostevin, Zs. Podolyák, P. H. Regan, and S. J. Steer Department of Physics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom (Received 5 October 2009: published 8 December 2009)

Basic, independent particle model (with very simple residual interactions added, such as δ - (contact) interaction) predicts large host of *isomers in the vicinity of closed shells / magic numbers*.

Two categories

- 1) <u>Spin-trap isomers</u> from particularly favoured coupling of (often high-j intruder) particles gives rise to high-spin state at low excitation energy. This state 'has nowhere to decay to' unless decays by high multipolarity (thus slow) transition. $|J_i+J_f| > \Delta J > |J_i-J_f|$
- 2) <u>Seniority isomers</u> δ -interaction can demonstrate with geometric picture how (single) jn multiplet looks like j^2 multiplet. Small energy difference between J_{max} and $(J_{max}-2)$ states cause 'seniority isomers'.

Physics....is there N=126 shell quenching ?

Assumption of a N=126 shell quenching leads to a considerable improvement in the global abundance fit in r-process calculations

What do we expect ?

E(2+) vs N with isotopes connected

E(2+) vs N with isotopes connected

large gaps in single-particle structure of nuclei...MAGIC NUMBERS = ENERGY GAPS

 Table 1 -- Nuclear Shell Structure (from Elementary Theory of Nuclear Shell Structure,

 Maria Goeppert Mayer & J. Hans D. Jensen, John Wiley & Sons, Inc., New York, 1955.)

Maria Goeppert Mayer & J. Hans D. Jensen, John Wiley & Sons, Inc., New York, 1955.) Angular Momentum Spin-Orbit Coupling Number of Nucleons Magic $(h\Omega/2\pi)$ (1/2, 3/2, 5/2, 7/2...) Shell Total Number 7 1j [184] - {184} 1j 15/2 16 3d 3/2 168] 4s 1/2 6 4s[164] 3d 6 28 7/2-[162] li 11/2. [154] 2g 6 3d 5/2 [142] 28 9/2 [136] 6 li li 13/2- $[126] - \{126\}$ 3p 1/2 [112] 5 3p [110] [106] 5 2f 74717 [100] [92] 5 lh lh 11/2-82] -- {82} 3s 1/2-4 3s ·[70] 2d 3/2 68] 2d 2d 5/2 [64]

1g 7/2-

581

Study the evolution of shell structure as a function of N:Z ratio.

²⁰⁸Pb (Z=82, N=126)

¹³²Sn (Z=50, N=82)

⁵⁶Ni (Z=28, N=28)

-1s 1/2-----[2] --- {2}

0

1s

Table 1 -- Nuclear Shell Structure (from Elementary Theory of Nuclear Shell Structure,

 Table 1 -- Nuclear Shell Structure (from Elementary Theory of Nuclear Shell Structure,

 Maria Goeppert Mayer & J. Hans D. Jensen, John Wiley & Sons, Inc., New York, 1955.)

Study the evolution of shell structure as a function of N:Z ratio. ²⁰⁸Pb (Z=82, N=126) 132 Sn (Z=50, N=82) ⁵⁶Ni (Z=28, N=28)

(Proton) holes in high-j intruders ($f_{7/2}, g_{9/2} \& h_{11/2}$) gives rise to seniority isomers' at magic shells. δ -interaction gives nice simple geometric rationale

for <u>Seniority Isomers</u> from $\Delta E \sim -V_o F_r \tan \left(\frac{\theta}{2}\right)$ for T=1, even J

8

Z < 50 ; N~82

T. Kautzsch et al., Eur. Phys. J. A 25, 117 (2005) N. Hoteling et al., Phys. Rev. C 76, 044324 (2007)

3.29x10⁵ identified ions Fragmentation + Fission

Time (DGF) [ch]

T. Kautzsch et al., Eur. Phys. J. A 25, 117 (2005) N. Hoteling et al., Phys. Rev. C 76, 044324 (2007)

3.29x10⁵ identified ions Fragmentation + Fission

Fission

+ Fission

Observation of Isomeric Decays in the r-Process Waiting-Point Nucleus ¹³⁰Cd₈₂

A. Jungclaus,¹ L. Cáceres,^{1,2} M. Górska,² M. Pfützner,³ S. Pietri,⁴ E. Werner-Malento,³ H. Grawe,² K. Langanke,²
G. Martínez-Pinedo,² F. Nowacki,⁵ A. Poves,¹ J. J. Cuenca-García,² D. Rudolph,⁶ Z. Podolyak,⁴ P. H. Regan,⁴ P. Detistov,⁷
S. Lalkovski,^{8,7} V. Modamio,¹ J. Walker,¹ P. Bednarczyk,^{2,9} P. Doornenbal,² H. Geissel,² J. Gerl,² J. Grebosz,^{2,9}
I. Kojouharov,² N. Kurz,² W. Prokopowicz,² H. Schaffner,² H. J. Wollersheim,² K. Andgren,¹⁰ J. Benlliure,¹¹ G. Benzoni,¹²
A. M. Bruce,⁸ E. Casarejos,¹¹ B. Cederwall,¹⁰ F. C. L. Crespi,¹² B. Hadinia,¹⁰ M. Hellström,⁶ R. Hoischen,^{6,2} G. Ilie,^{13,14}
J. Jolie,¹³ A. Khaplanov,¹⁰ M. Kmiecik,⁹ R. Kumar,¹⁵ A. Maj,⁹ S. Mandal,¹⁶ F. Montes,² S. Myalski,⁹ G. S. Simpson,¹⁷

FIG. 1 (color online). Example of particle identification plots from the fragmentation of ¹³⁶Xe. Left: Z identification from the energy losses measured in two multiple sampling ionization chamber ionization chambers. Right: Isotope identification from the positions of the Cd ions in the final focal plane S4 of the FRS shown as a function of A/Q.

Observation of Isomeric Decays in the r-Process Waiting-Point Nucleus ¹³⁰Cd₈₂

N~126 ; Z ~82

Summary of the Passive Stopper Z< 82, N \leq 126 Nuclei Experiment

A total of 5.3 days of beam time focusing the FRS on 6 different nuclides. Gamma-ray spectroscopy on 83 nuclides. 47 isomers (27 of which are newly discovered) measured in 37 nuclides,. This has provided the first nuclear structure information on 15 nuclides. 34 isomeric ratios measured.

Isomer Gamma-ray Spectroscopy of N = 126, Z<82 Nuclei

PHYSICAL REVIEW C 78, 061302(R) (2008)

Single-particle behavior at N = 126: Isomeric decays in neutron-rich ²⁰⁴Pt

S. J. Steer,^{1,*} Zs. Podolyák,¹ S. Pietri,¹ M. Górska,² P. H. Regan,¹ D. Rudolph,³ E. Werner-Malento,² A. B. Garnsworthy,^{1,4} R. Hoischen,³ J. Gerl,² H. J. Wollersheim,² K. H. Maier,^{5,6} H. Grawe,² F. Becker,² P. Bednarczyk,^{2,6} L. Cáceres,^{2,7} P. Doornenbal,^{2,8} H. Geissel,² J. Grębosz,^{2,6} A. Kelic,² I. Kojouharov,² N. Kurz,² F. Montes,² W. Prokopowicz,² T. Saito,² H. Schaffner,² S. Tashenov,² A. Heinz,⁴ M. Pfützner,⁹ T. Kurtukian-Nieto,¹⁰ G. Benzoni,¹¹ A. Jungclaus,⁷ D. L. Balabanski,^{12,13} C. Brandau,¹ B. A. Brown,^{1,14} A. M. Bruce,¹⁵ W. N. Catford,¹ I. J. Cullen,¹ Zs. Dombrádi,¹⁶ M. E. Estevez,¹⁷ W. Gelletly,¹ G. Ilie,^{8,18} J. Jolie,⁸ G. A. Jones,¹ M. Kmiecik,⁶ F. G. Kondev,¹⁹ R. Krücken,²⁰ S. Lalkovski,^{15,21} Z. Liu,¹ A. Maj,⁶ S. Myalski,⁶ S. Schwertel,²⁰ T. Shizuma,^{1,22} P. M. Walker,¹ and O. Wieland¹¹

257

PHYSICAL REVIEW C 78, 061302(R) (2008) Single-particle behavior at N = 126: Isomeric decays in neutron-rich ²⁰⁴Pt 800 - $\Delta t = 50 - 850$ ns $T_{1/2} = 112(4) \text{ ns}$ ی¹⁰⁰⁰ 0<u>9</u> 100 / 10 364 S. J. Steer,^{1,*} Zs. Podolyák,¹ S. Pietri,¹ M. Górska,² P. H. Regan,¹ D. R ²⁰⁶Hg 600 R. Hoischen,³ J. Gerl,² H. J. Wollersheim,² K. H. Maier,^{5,6} H. Gra 10 1157 and 1257 keV 400 1157 P. Doornenbal,^{2,8} H. Geissel,² J. Grębosz,^{2,6} A. Kelic,² I. Kojouharov, 200 400 600 200 Time (ns) H. Schaffner,² S. Tashenov,² A. Heinz,⁴ M. Pfützner,⁹ T. Kurt 0 D. L. Balabanski,^{12,13} C. Brandau,¹ B. A. Brown,^{1,14} A. M. Bruce, 10000 1000 1000 100 $\Delta t = 1.5 - 80 \ \mu s$ $T_{1/2} = 2.09(2) \ \mu s$ ²⁰⁶Hg¹ M. E. Estevez,¹⁷ W. Gelletly,¹ G. Ilie,^{8,18} J. Jolie,⁸ G. A. Jones,¹ 100 S. Lalkovski,^{15,21} Z. Liu,¹ A. Maj,⁶ S. My 2000 1034 and 1068 keV 10 1034 1068 T. Shizuma,^{1,22} P. M. Walker,¹ an 1000 5 10 15 Time (µs) 2¹⁰⁰⁰ 0 $T_{1/2} = 163(5) \text{ ns}$ $\Delta t = 25 - 700 \text{ ns}$ 962 946 ²⁰⁵Au¹ 950 ΔE MUSIC (arb. units)($\propto Z^2$) 300 සු 100 37, 928, 946, 737 200 962, 980 and 1172 keV 1172 10 900 Counts per keV 928 200 400 600 100 ကဲ Time (ns) 0 100 20 hts ²⁰⁴Pt $\Delta t = 50 - 850 \text{ ns}$ T_{1/2} = 146(14) ns 150 1061 $800 + \Delta q = 0$ 1061 and 1158 keV 100 (a) ray 250 750 500 1158 × 50 Time (ns) 900 1000 1100 0 $\Delta B\rho$ arcoss the intermediate focus (arb. units) ($\propto q^2$) $T_{1/2} = 5.5(7) \,\mu s$ 872 and 1123 keV $\Delta t = 1.5 - 85 \, \mu s$ 625 ²⁰⁴Pt sn T_{1/2} = 55(3) μs ∾ 125 1200 100 = 0 nuclei selected Δa (b) 800 1123 Position (final focus) (mm) 25 20 40 60 0 80 400 50 Time (µs) 0 T_{1/2} = 798(350) ns <u>ဗ</u>ု16 895 250 0 841 and 895 keV (keV) ⁸⁵⁰ 8 250 900 1000 1500 Time (ns) 500 895 -50 203 341 Δ 40 - 2400 ns 0 -100250 1000 1250 0 500 750 E_w (keV) 2.62 2.64 2.56 2.58 2.60 2.54

PHYSICAL REVIEW C 78, 061302(R) (2008)

Population of low-seniority isomeric states of ²⁰⁶Hg by two-proton knockout reactions at relativistic energies

E. C. Simpson, J. A. Tostevin, Zs. Podolyák, P. H. Regan, and S. J. Steer

Department of Physics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom (Received 5 October 2009; published 8 December 2009)

Isomer ratios also used to improve/test knockout reaction theory... isomeric states tend to be rather 'pure' shell model configurations.

Population of low-seniority isomeric states of ²⁰⁶Hg by two-proton knockout reactions at relativistic energies

E. C. Simpson, J. A. Tostevin, Zs. Podolyák, P. H. Regan, and S. J. Steer

Department of Physics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom (Received 5 October 2009; published 8 December 2009)

	State I^{π}	Isomeric ratio (%)	$\begin{array}{c c} & 92(2) \text{ ns } 3658 & 3658 \\ \hline & 97(8^{+}) \\ \hline & 3032 & 146(14) \text{ ns } (10^{+}) \\ \hline & 3621 & 3621 \\ \hline & 1157 \\ \hline \end{array}$
Experiment	5- (10 ⁺) ^a (10 ⁺) ^b	$21.9^{+1.2}_{-2.9} \\ 3.1^{+1.0}_{-1.2} \\ 2.2^{+0.7}_{-0.8}$	$\begin{array}{c} \overset{8^{+}}{3013} \overset{8^{+}}{2984} & 1158 \\ \overset{9}{3013} \overset{9}{3} \overset{1}{158} & 1061 \\ \overset{(7^{-})}{1991} & \overset{7^{-}}{364} & \overset{2498}{7^{-}} & \overset{249}$
Theory	5 ⁻ (direct only) 5 ⁻ (includes 7 ⁻ , 8 ⁺ , and 10 ⁺) 10 ⁺ 5 ⁻	4.8 18.8 4.7 32.5 [14]	$\begin{array}{c} 2^{+}_{\overline{94}1}2^{+}_{-\overline{917}} & \begin{array}{c} & & & & & & & & & & & & & & & & & & &$

Isomer ratios also used to improve/test knockout reaction theory... isomeric states tend to be rather 'pure' shell model configurations.

PHYSICAL REVIEW C 80, 061302(R) (2009)

Nuclear structure "southeast" of ²⁰⁸Pb: Isomeric states in ²⁰⁸Hg and ²⁰⁹Tl

N. Al-Dahan,^{1,2} Zs. Podolyák,^{1,*} P. H. Regan,¹ M. Górska,³ H. Grawe,³ K. H. Maier,⁴ J. Gerl,³ S. B. Pietri,³ H. J. Wollersheim,³ N. Alkhomashi,¹ A. Y. Deo,¹ A. M. Denis Bacelar,⁵ G. Farrelly,¹ S. J. Steer,¹ A. M. Bruce,⁵ P. Boutachkov,³ C. Domingo-Pardo,³ A. Algora,^{6,7} J. Benlliure,⁸ A. Bracco,⁹ E. Calore,¹⁰ E. Casarejos,⁸ I. J. Cullen,¹ P. Detistov,¹¹ Zs. Dombrádi,⁷ M. Doncel,¹² F. Farinon,³ W. Gelletly,¹ H. Geissel,³ N. Goel,³ J. Grebosz,⁴ R. Hoischen,^{3,13} I. Kojouharov,³ N. Kurz,³ S. Lalkovski,⁵ S. Leoni,¹⁴ F. Molina,⁶ D. Montanari,⁹ A. I. Morales,⁸ A. Musumarra,^{3,15} D. R. Napoli,¹⁰ R. Nicolini,⁹ C. Nociforo,³ A. Prochazka,³ W. Prokopowicz,³ B. Rubio,⁶ D. Rudolph,^{3,13} H. Schaffner,³ P. Strmen,¹⁶ I. Szarka,¹⁶ T. Swan,¹ J. S. Thomas,¹ J. J. Valiente-Dobón,¹⁰ S. Verma,⁸ P. M. Walker,¹ and H. Weick³

PHYSICAL REVIEW C 80, 061302(R) (2009)

Nuclear structure "southeast" of ²⁰⁸Pb: Isomeric states in ²⁰⁸Hg and ²⁰⁹Tl

N. Al-Dahan,^{1,2} Zs. Podolyák,^{1,*} P. H. Regan,¹ M. Górska,³ H. Grawe,³ K. H. Maier,⁴ J. Gerl,³ S. B. Pietri,³ H. J. Wollersheim,³ N. Alkhomashi,¹ A. Y. Deo,¹ A. M. Denis Bacelar,⁵ G. Farrelly,¹ S. J. Steer,¹ A. M. Bruce,⁵ P. Boutachkov,³ C. Domingo-Pardo,³ A. Algora,^{6,7} J. Benlliure,⁸ A. Bracco,⁹ E. Calore,¹⁰ E. Casarejos,⁸ I. J. Cullen,¹ P. Detistov,¹¹ Zs. Dombrádi,⁷ M. Doncel,¹² F. Farinon,³ W. Gelletly,¹ H. Geissel,³ N. Goel,³ J. Grebosz,⁴ R. Hoischen,^{3,13} I. Kojouharov,³ N. Kurz,³ S. Lalkovski,⁵ S. Leoni,¹⁴ F. Molina,⁶ D. Montanari,⁹ A. I. Morales,⁸ A. Musumarra,^{3,15} D. R. Napoli,¹⁰ R. Nicolini,⁹ C. Nociforo,³ A. Prochazka,³ W. Prokopowicz,³ B. Rubio,⁶ D. Rudolph,^{3,13} H. Schaffner,³ P. Strmen,¹⁶ I. Szarka,¹⁶ T. Swan,¹ J. S. Thomas,¹ J. J. Valiente-Dobón,¹⁰ S. Verma,⁸ P. M. Walker,¹ and H. Weick³

Proton-hole excitation in the closed shell nucleus ²⁰⁵Au

Zs. Podolyák^{a,*}, G.F. Farrelly^a, P.H. Regan^a, A.B. Garnsworthy^a, S.J. Steer^a, M. Górska^b, J. Benlliure^c, E. Casarejos^c, S. Pietri^a, J. Gerl^b, H.J. Wollersheim^b, R. Kumar^d, F. Molina^e, A. Algora^{e,f}, N. Alkhomashi^a, G. Benzoni^g, A. Blazhev^h, P. Boutachkov^b, A.M. Bruceⁱ, L. Caceres^{b,j}, I.J. Cullen^a, A.M. Denis Bacelarⁱ, P. Doornenbal^b, M.E. Estevez^c, Y. Fujita^k, W. Gelletly^a, H. Geissel^b, H. Grawe^b, J. Grębosz^{b,1}, R. Hoischen^{m,b}, I. Kojouharov^b, S. Lalkovskiⁱ, Z. Liu^a, K.H. Maier^{n,1}, C. Mihai^o, D. Mücher^h, B. Rubio^e, H. Schaffner^b, A. Tamii^k, S. Tashenov^b, J.J. Valiente-Dobón^p, P.M. Walker^a, P.J. Woods^q

Proton-hole excitation in the closed shell nucleus ²⁰⁵Au

Zs. Podolyák^{a,*}, G.F. Farrelly^a, P.H. Regan^a, A.B. Garnsworthy^a, S.J. Steer^a, M. Górska^b, J. Benlliure^c, E. Casarejos^c, S. Pietri^a, J. Gerl^b, H.J. Wollersheim^b, R. Kumar^d, F. Molina^e, A. Algora^{e,f}, N. Alkhomashi^a, G. Benzoni^g, A. Blazhev^h, P. Boutachkov^b, A.M. Bruceⁱ, L. Caceres^{b,j}, I.J. Cullen^a, A.M. Denis Bacelarⁱ, P. Doornenbal^b, M.E. Estevez^c, Y. Fujita^k, W. Gelletly^a, H. Geissel^b, H. Grawe^b, J. Grębosz^{b,1}, R. Hoischen^{m,b}, I. Kojouharov^b, S. Lalkovskiⁱ, Z. Liu^a, K.H. Maier^{n,1}, C. Mihai^o, D. Mücher^h, B. Rubio^e, H. Schaffner^b, A. Tamii^k, S. Tashenov^b, J.J. Valiente-Dobón^p, P.M. Walker^a, P.J. Woods^q

Proton-hole excitation in the closed shell nucleus ²⁰⁵Au

Zs. Podolyák^{a,*}, G.F. Farrelly^a, P.H. Regan^a, A.B. Garnsworthy^a, S.J. Steer^a, M. Górska^b, J. Benlliure^c, E. Casarejos^c, S. Pietri^a, J. Gerl^b, H.J. Wollersheim^b, R. Kumar^d, F. Molina^e, A. Algora^{e,f}, N. Alkhomashi^a, G. Benzoni^g, A. Blazhev^h, P. Boutachkov^b, A.M. Bruceⁱ, L. Caceres^{b,j}, I.J. Cullen^a, A.M. Denis Bacelarⁱ, P. Doornenbal^b, M.E. Estevez^c, Y. Fujita^k, W. Gelletly^a, H. Geissel^b, H. Grawe^b, J. Grębosz^{b,1}, R. Hoischen^{m,b}, I. Kojouharov^b, S. Lalkovskiⁱ, Z. Liu^a, K.H. Maier^{n,1}, C. Mihai^o, D. Mücher^h, B. Rubio^e, H. Schaffner^b, A. Tamii^k, S. Tashenov^b, J.J. Valiente-Dobón^p, P.M. Walker^a, P.J. Woods^q

The experimental challanges

The seniority scheme

Nucleons in a valence jⁿ configuration behave according to a seniority scheme: the states can be labelled by their seniority v

SENIORITY SCHEME

 $\mathbf{v} = \mathbf{0} \qquad \begin{array}{ccc} 0^+ & & \\ \hline (2g_{9/2})^2 & & 0^+ & \\ \hline (2g_{9/2})^4 & & 0^+ & \\ \hline (2g_{9/2})^6 & & 0^+ & \\ \hline (2g_{9/2})^8 & & \\ \hline \end{array}$

For even-even nuclei, the 0⁺ ground state has seniority v = 0, while the 2⁺, 4⁺, 6⁺, 8⁺ states have v = 2

<u>In a pure seniority scheme, the relative level energies do not depend</u> <u>on the number of particles in the shell j</u>

²¹⁴Pb : 8⁺ isomer

T_{1/2} = 5.9 (1) μs

- Gottardo, J.J. Valiente Dobon, Α.
- G. Benzoni et al., for RISING В.

^{212,214,216}Pb: 8⁺ isomer

The experimental levels and the seniority scheme

Z~28 N~28

PHYSICAL REVIEW C 78, 021301(R) (2008)

Isospin symmetry and proton decay: Identification of the 10⁺ isomer in ⁵⁴Ni

D. Rudolph,¹ R. Hoischen,^{1,2} M. Hellström,¹ S. Pietri,³ Zs. Podolyák,³ P. H. Regan,³ A. B. Garnsworthy,^{3,4} S. J. Steer,³
F. Becker,^{2,*} P. Bednarczyk,^{2,5} L. Cáceres,^{2,6} P. Doornenbal,^{2,7,†} J. Gerl,² M. Górska,² J. Grębosz,^{2,5} I. Kojouharov,² N. Kurz,²
W. Prokopowicz,^{2,5} H. Schaffner,² H. J. Wollersheim,² L.-L. Andersson,¹ L. Atanasova,⁸ D. L. Balabanski,^{8,9} M. A. Bentley,¹⁰
A. Blazhev,⁷ C. Brandau,^{2,3} J. R. Brown,¹⁰ C. Fahlander,¹ E. K. Johansson,¹ A. Jungclaus,⁶ and S. M. Lenzi¹¹

PHYSICAL REVIEW C 78, 021301(R) (2008)

Isospin symmetry and proton decay: Identification of the 10⁺ isomer in ⁵⁴Ni

D. Rudolph,¹ R. Hoischen,^{1,2} M. Hellström,¹ S. Pietri,³ Zs. Podolyák,³ P. H. Regan,³ A. B. Garnsworthy,^{3,4} S. J. Steer,³
F. Becker,^{2,*} P. Bednarczyk,^{2,5} L. Cáceres,^{2,6} P. Doornenbal,^{2,7,†} J. Gerl,² M. Górska,² J. Grębosz,^{2,5} I. Kojouharov,² N. Kurz,²
W. Prokopowicz,^{2,5} H. Schaffner,² H. J. Wollersheim,² L.-L. Andersson,¹ L. Atanasova,⁸ D. L. Balabanski,^{8,9} M. A. Bentley,¹⁰
A. Blazhev,⁷ C. Brandau,^{2,3} J. R. Brown,¹⁰ C. Fahlander,¹ E. K. Johansson,¹ A. Jungclaus,⁶ and S. M. Lenzi¹¹

PHYSICAL REVIEW C 78, 021301(R) (2008)

Isospin symmetry and proton decay: Identification of the 10⁺ isomer in ⁵⁴Ni

D. Rudolph,¹ R. Hoischen,^{1,2} M. Hellström,¹ S. Pietri,³ Zs. Podolyák,³ P. H. Regan,³ A. B. Garnsworthy,^{3,4} S. J. Steer,³
F. Becker,^{2,*} P. Bednarczyk,^{2,5} L. Cáceres,^{2,6} P. Doornenbal,^{2,7,†} J. Gerl,² M. Górska,² J. Grębosz,^{2,5} I. Kojouharov,² N. Kurz,²
W. Prokopowicz,^{2,5} H. Schaffner,² H. J. Wollersheim,² L.-L. Andersson,¹ L. Atanasova,⁸ D. L. Balabanski,^{8,9} M. A. Bentley,¹⁰
A. Blazhev,⁷ C. Brandau,^{2,3} J. R. Brown,¹⁰ C. Fahlander,¹ E. K. Johansson,¹ A. Jungclaus,⁶ and S. M. Lenzi¹¹

Physics Letters B 660 (2008) 326-330

www.elsevier.com/locate/physleth

Neutron-proton pairing competition in N = Z nuclei: Metastable state decays in the proton dripline nuclei ⁸²₄₁Nb and ⁸⁶₄₃Tc

A.B. Garnsworthy ^{a,b,*}, P.H. Regan ^a, L. Cáceres ^{c,d}, S. Pietri ^a, Y. Sun ^{e,f}, D. Rudolph ^g, M. Górska ^c, Zs. Podolyák ^a, S.J. Steer ^a, R. Hoischen ^{c,g}, A. Heinz ^b, F. Becker ^c, P. Bednarczyk ^{c,h}, P. Doornenbal ^c, H. Geissel ^c, J. Gerl ^c, H. Grawe ^c, J. Grębosz ^{c,h}, A. Kelic ^c, I. Kojouharov ^c, N. Kurz ^c, F. Montes ^c, W. Prokopowicz ^c, T. Saito ^c, H. Schaffner ^c, S. Tachenov ^c, E. Werner-Malento ^{c,i}, H.J. Wollersheim ^c, G. Benzoni ^j, B.B. Blank ^k, C. Brandau ^{a,c}, A.M. Bruce ¹, F. Camera ^j, W.N. Catford ^a, I.J. Cullen ^a, Zs. Dombrádi ^m, E. Estevez ⁿ, W. Gelletly ^a, G. Ilie ^{o,p}, J. Jolie ^o, G.A. Jones ^a, A. Jungclaus ^d, M. Kmiecik ^h, F.G. Kondev ^q, T. Kurtukian-Nieto ^{k,n}, S. Lalkovski ^{l,r}, Z. Liu ^a, A. Maj ^h, S. Myalski ^h, M. Pfützner ⁱ, S. Schwertel ^s, T. Shizuma ^{a,t}, A.J. Simons ^{a,u}, P.M. Walker ^a, O. Wieland ^j, F.R. Xu ^v

Physics Letters B 660 (2008) 326-330

Neutron-proton pairing competition in N = Z nuclei: Metastable state decays in the proton dripline nuclei ⁸²₄₁Nb and ⁸⁶₄₃Tc

www.elsevier.com/locate/physletb

A.B. Garnsworthy ^{a,b,*}, P.H. Regan ^a, L. Cáceres ^{c,d}, S. Pietri ^a, Y. Sun ^{e,f}, D. Rudolph ^g, M. Górska ^c Zs. Podolyák ^a, S.J. Steer ^a, R. Hoischen ^{c,g}, A. Heinz ^b, F. Becker ^c, P. Bednarczyk ^{c,h}, P. Doornenbal ^c, H. Geissel ^c, J. Gerl ^c, H. Grawe ^c, J. Grębosz ^{c,h}, A. Kelic ^c, I. Kojouharov ^c, N. Kurz ^c, F. Montes ^c, W. Prokopowicz ^c, T. Saito ^c, H. Schaffner ^c, S. Tachenov ^c,
E. Werner-Malento ^{c,i}, H.J. Wollersheim ^c, G. Benzoni ^j, B.B. Blank ^k, C. Brandau ^{a,c}, A.M. Bruce ¹
F. Camera ^j, W.N. Catford ^a, I.J. Cullen ^a, Zs. Dombrádi ^m, E. Estevez ⁿ, W. Gelletly ^a, G. Ilie ^{o,p}, J. Jolie ^o, G.A. Jones ^a, A. Jungclaus ^d, M. Kmiecik ^h, F.G. Kondev ^q, T. Kurtukian-Nieto ^{k,a}, S. Lalkovski ^{1,r}, Z. Liu ^a, A. Maj ^h, S. Myalski ^h, M. Pfützner ⁱ, S. Schwertel ^s, T. Shizuma ^{a,t}, A.J. Simons ^{a,u}, P.M. Walker ^a, O. Wieland ^j, F.R. Xu ^v

Physics Letters B 660 (2008) 326-330

Neutron-proton pairing competition in N = Z nuclei: Metastable state decays in the proton dripline nuclei ${}^{82}_{41}$ Nb and ${}^{86}_{43}$ Tc

A.B. Garnsworthy ^{a,b,*}, P.H. Regan ^a, L. Cáceres ^{c,d}, S. Pietri ^a, Y. Sun ^{e,f}, D. Rudolph ^a, M. Górska ^c Zs. Podolyák ^a, S.J. Steer ^a, R. Hoischen ^{e,g}, A. Heinz ^b, F. Becker ^c, P. Bednarczyk ^{e,h}, P. Doornenbal ^c, H. Geissel ^e, J. Gerl ^c, H. Grawe ^c, J. Grębosz ^{e,h}, A. Kelic ^e, I. Kojouharov ^e, N. Kurz ^e, F. Montes ^e, W. Prokopowicz ^e, T. Saito ^e, H. Schaffner ^e, S. Tachenov ^e,
E. Werner-Malento ^{e,i}, H.J. Wollersheim ^e, G. Benzoni ^j, B.B. Blank ^k, C. Brandau ^{a,e}, A.M. Bruce ¹, F. Camera ^j, W.N. Catford ^a, I.J. Cullen ^a, Zs. Dombrádi ^m, E. Estevez ⁿ, W. Gelletly ^a, G. Ilie ^{o,p}, J. Jolie ^o, G.A. Jones ^a, A. Jungclaus ^d, M. Kmiecik ^h, F.G. Kondev ^q, T. Kurtukian-Nieto ^{k,a}, S. Lalkovski ^{1,r}, Z. Liu ^a, A. Maj ^h, S. Myalski ^h, M. Pfützner ⁱ, S. Schwertel ^s, T. Shizuma ^{a,t}, A.J. Simons ^{a,u}, P.M. Walker ^a, O. Wieland ^j, F.R. Xu ^v

www.elsevier.com/locate/physletb

6+

N~Z~50 nuclei

Study of $N \ge Z$ proton drip-line nuclei 96,97,98 Cd with astrophysical consequences

Spokespersons: A. Blazhev, P. Boutachkov Z. Liu, R. Wadsworth

- Study the isospin symmetry as a function of mass, at N~Z.
- Shell Model residual interaction.
- Study the neutron-proton pairing.
 Study the competition between pairing and deformation for N~Z, A~90-100

(the π and ν occupy the g_{9/2} shell).

rp-process.

15 Shifts: ¹²⁴Xe: 850 MeV/u I₀~10⁹ pps on ⁹Be target 15 Shifts remaining

NuSTAR 2010

S352
Preliminary Results

Isomeric decays of 98Cd fragments.

S352

Isomeric decays of ⁹⁶Ag fragments.

Analyzed to date:

- ⁹⁴Pd: new, high-spin isomer.
- ⁹⁶Ag: two new isomers, including core-excited states.
- ⁹⁸Cd: new high-energy, isomeric γ-ray transition from core breaking.

More to come ...

PHYSICAL REVIEW C 82, 061309(R) (2010)

Observation of a new high-spin isomer in ⁹⁴Pd

T. S. Brock,¹ B. S. Nara Singh,¹ P. Boutachkov,² N. Braun,³ A. Blazhev,³ Z. Liu,⁴ R. Wadsworth,¹ M. Górska,² H. Grawe,² S. Pietri,² C. Domingo-Pardo,² D. Rudolph,⁵ S. J. Steer,⁶ A. Ataç,⁷ L. Bettermann,³ L. Cáceres,² T. Engert,² K. Eppinger,⁸ T. Faestermann,⁸ F. Farinon,² F. Finke,³ K. Geibel,³ J. Gerl,² R. Gernhäuser,⁸ N. Goel,² A. Gottardo,⁴ J. Grębosz,⁹ C. Hinke,⁸ R. Hoischen,^{2,5} G. Ilie,³ H. Iwasaki,³ J. Jolie,³ A. Kaşkaş,⁷ I. Kojuharov,² R. Krücken,⁸ N. Kurz,² E. Merchán,¹⁰ C. Nociforo,² J. Nyberg,¹¹ M. Pfützner,¹² A. Prochazka,² Zs. Podolyák,⁶ P. H. Regan,⁶ P. Reiter,³ S. Rinta-Antila,¹³ H. Schaffner,² C. Scholl,³ P.-A. Söderström,¹¹ N. Warr,³ H. Weick,² H.-J. Wollersheim,¹⁴ and P. J. Woods⁴

(RISING Collaboration)

PHYSICAL REVIEW C 82, 061309(R) (2010)

Observation of a new high-spin isomer in ⁹⁴Pd

T. S. Brock,¹ B. S. Nara Singh,¹ P. Boutachkov,² N. Braun,³ A. Blazhev,³ Z. Liu,⁴ R. Wadsworth,¹ M. Górska,² H. Grawe,² S. Pietri,² C. Domingo-Pardo,² D. Rudolph,⁵ S. J. Steer,⁶ A. Ataç,⁷ L. Bettermann,³ L. Cáceres,² T. Engert,² K. Eppinger,⁸ T. Faestermann,⁸ F. Farinon,² F. Finke,³ K. Geibel,³ J. Gerl,² R. Gernhäuser,⁸ N. Goel,² A. Gottardo,⁴ J. Grebosz,⁹ C. Hinke,⁸ R. Hoischen,^{2,5} G. Ilie,³ H. Iwasaki,³ J. Jolie,³ A. Kaşkaş,⁷ I. Kojuharov,² R. Krücken,⁸ N. Kurz,² E. Merchán,¹⁰ C. Nociforo,² J. Nyberg,¹¹ M. Pfützner,¹² A. Prochazka,² Zs. Podolyák,⁶ P. H. Regan,⁶ P. Reiter,³ S. Rinta-Antila,¹³ H. Schaffner,² C. Scholl,³ P.-A. Söderström,¹¹ N. Warr,³ H. Weick,² H.-J. Wollersheim,¹⁴ and P. J. Woods⁴ (RISING Collaboration) (20^{+}) 7106 $106 = (19)^{+}$ c 1545 1651 Counts per keV Energy (keV) EXP P1G9 F5PG9

Isomer spectroscopy of ⁹⁸Cd

¹⁰⁰Sn setting (15 days ¹²⁴Xe beam)

Faestermann, Hinke, Eppinger et al.,

6⁺ Isomer in ¹⁰²Sn

6⁺ Isomer in ¹⁰²Sn

6⁺ Isomer in ¹⁰²Sn

Gamma Spectrum after Beta Decay of ¹⁰⁰Sn

all events within 4 s after implantation

Other N~Z nuclei...

Available online at www.sciencedirect.com

ScienceDirect

PHYSICS LETTERS B

Physics Letters B 660 (2008) 326-330

www.elsevier.com/locate/physletb

Neutron-proton pairing competition in N = Z nuclei: Metastable state decays in the proton dripline nuclei ⁸²₄₁Nb and ⁸⁶₄₃Tc

A.B. Garnsworthy ^{a,b,*}, P.H. Regan ^a, L. Cáceres ^{c,d}, S. Pietri ^a, Y. Sun ^{e,f}, D. Rudolph ^g, M. Górska ^c, Zs. Podolyák ^a, S.J. Steer ^a, R. Hoischen ^{c,g}, A. Heinz ^b, F. Becker ^c, P. Bednarczyk ^{c,h}, P. Doornenbal ^c, H. Geissel ^c, J. Gerl ^c, H. Grawe ^c, J. Grębosz ^{c,h}, A. Kelic ^c, I. Kojouharov ^c, N. Kurz ^c, F. Montes ^c, W. Prokopowicz ^c, T. Saito ^c, H. Schaffner ^c, S. Tachenov ^c, E. Werner-Malento ^{c,i}, H.J. Wollersheim ^c, G. Benzoni ^j, B.B. Blank ^k, C. Brandau ^{a,c}, A.M. Bruce ¹, F. Camera ^j, W.N. Catford ^a, I.J. Cullen ^a, Zs. Dombrádi ^m, E. Estevez ⁿ, W. Gelletly ^a, G. Ilie ^{o,p}, J. Jolie ^o, G.A. Jones ^a, A. Jungclaus ^d, M. Kmiecik ^h, F.G. Kondev ^q, T. Kurtukian-Nieto ^{k,n}, S. Lalkovski ^{l,r}, Z. Liu ^a, A. Maj ^h, S. Myalski ^h, M. Pfützner ⁱ, S. Schwertel ^s, T. Shizuma ^{a,t}, A.J. Simons ^{a,u}, P.M. Walker ^a, O. Wieland ^j, F.R. Xu ^v

This work tests if isospin symmetry is good enough to justify the combined analysis of *charge exchange reactions* and *beta-decay* In mirror nuclei.

When the B_{GT} values are obtained from Charge Exchange Reactions, absolute normalisation is needed and can be obtained using the combined analysis

There were a series of experiments at RISING to test this idea

And a facility at RCNP Osaka where these reactions can be studied in high resolution

Results: preliminary B_{GT} values from beta decay

A=54	B(GT) decay	B(GT) CE
937 keV	0.471(55)	0.493(62)
3378 keV	0.074(14)	0.079(11)
3889 keV	0.064(17)	0.103(14)
4544 keV	0.075(27)	0.147(20)
A=50		
652 keV	0.547(90)	0.510(14)
2404 keV	0.126(23)	0.151(40)
2685 keV	0.090(19)	0.106(28)
3380 keV	0.281(55)	0.350(93)
A=46		
994 keV	0.330(329)	0.368(44)
1433 keV	0.107(107)	0.122(15)
2462 keV	0.146(146)	0.201(24)
2698 keV	0.111(111)	0.205(25)
2978 keV	0.479(478)	0.625(75)
3870 keV	0.105(119)	0.117(14)

Isospin symmetry works in general (full strength) but some differences appear at high excitation energy, which should be understood

This is the first experimental test of B_{GT} gs symmetry in the f shell.

Francisco Molina et al., an[']alysis, in progress IFIC (Valencia)

Rubio, Fujita, Gelletly et al.,

β^- -delayed spectroscopy of neutron-rich tantalum nuclei: Shape evolution in neutron-rich tungsten isotopes

N. Alkhomashi,^{1,*} P. H. Regan,¹ Zs. Podolyák,¹ S. Pietri,¹ A. B. Garnsworthy,¹ S. J. Steer,¹ J. Benlliure,² E. Caserejos,²
R. F. Casten,³ J. Gerl,⁴ H. J. Wollersheim,⁴ J. Grebosz,⁵ G. Farrelly,¹ M. Górska,⁴ I. Kojouharov,⁴ H. Schaffner,⁴ A. Algora,^{6,7}
G. Benzoni,⁸ A. Blazhev,⁹ P. Boutachkov,⁴ A. M. Bruce,¹⁰ A. M. Denis Bacelar,¹⁰ I. J. Cullen,¹ L. Cáceres,⁴ P. Doornenbal,⁴
M. E. Estevez,² Y. Fujita,¹¹ W. Gelletly,¹ R. Hoischen,^{4,12} R. Kumar,¹³ N. Kurz,⁴ S. Lalkovski,¹⁰ Z. Liu,¹⁴ C. Mihai,¹⁵
F. Molina,⁶ A. I. Morales,² D. Mücher,⁹ W. Prokopowicz,⁴ B. Rubio,⁶ Y. Shi,¹⁶ A. Tamii,¹⁷ S. Tashenov,⁴
J. Valiente-Dobón,¹⁸ P. M. Walker,¹ P. J. Woods,¹⁴ and F. R. Xu¹⁶

(some) of The 'Jedi Masters' needed to make it all work...

- Design group at Daresbury/Liverpool (Dave Seddon/Paul Morrall) for design of RISING holding structure.
- Peter Reiter + Koln group....use the DGF modules for gamma DAQ.
- Nick Kurz; Henning Schaffner letting us see the signals.
- Ivan Koj. the 'shepherd of the detectors'
- Jurek Greb. with Cracow we could 'see where we were going'
- W. Prokopowicz making it all fit together
- Rakesh Kumar testing the DSSSDs
- Stephane Pietri keeping it all together, making it work.
- Hans-Juergen keeping it moving forward...taking the 'bullets' when needed.

Future....PreSpec – DECAY & DESPEC to look forward to,

Future....PreSpec – DECAY & DESPEC to look forward to,

(some) of the PhD / Masters Theses....

- 1. Adam Garnsworthy (Surrey PhD 2007)
- 2. Steven Steer (Surrey PhD 2008)
- 3. Nasser Alkhomashi (Surrey PhD 2010)
- 4. Greg Farrelly (Surrey 2010)
- 5. Nawras Al-Dahan (Surrey 2010)
- 6. Mike Bunce (Surrey -2012)
- 7. Mike Bowry (Surrey -2012)
- 8. Lucia Caceres (Madrid/GSI PhD 2008)
- 9. Robert Hoischen (Lund/GSI)
- 10. Christophe Hinke (TU Munich)
- 11. Katrin Eppinger (TU Munich)
- 12. Farheen Naqvi (GSI/Koln)
- 13. Namita Goel (GSI/Koln)
- 14. Anna Denis-Bacelar (Brighton)
- 15. Maria Domcel (Salamaca)
- 16. Roberto Nicolini (Milano)
- 17. Andrea Gottadro (Padova)
- 18. Tom Brook (York)
- 19. Norbert Braun (Koln)

20.....

<u>Experiment</u>	<u>Spokespersons</u>	<u>Dates</u>	Publication
1. S244: ¹⁰⁷ Ag beam; N=Z isomers	Regan	25 Feb –1 Mar 06	A.B. Garnsworthy et al., PL <u>B660</u> (2008) 326 A.B. Garnsworthy et al., PR <u>C80</u> (2009) 064303
2. S299; ²⁰⁸ Pb beam N~126 isomers	Podolyak	2 Mar – 8 Mar 06	S.J. Steer et al., PR <u>C78</u> (2008) 061302(R); Zs. Podolyak et al., PR <u>C79</u> (2009) 031305(R); Zs. Podolyak et al., PR <u>C79</u> (2009) 031305 (R) E.C. Simpson PR <u>C80</u> (2009) 064608 Zs. Podolyak et al., EPJ <u>A42</u> (2009) 489 S.J.Steer et al., IJMP <u>E18</u> (2009) 1002
3. S244: ⁵⁸ Ni beam; A=54 mirrors	Rudolph	9 Mar –12 Mar 06	D. Rudolph et al., PR <u>C78</u> (2008) 021301(R) ;. Rudolph et al., EPJ <u>A36</u> (2008) 131.
4. S305: ¹³⁶ Xe beam. N~82 isomers	Jungclaus	26 Jun –9 July 06	A. Jungclaus et al. PRL <u>99</u> (2007) 132501
5. S244: ²³⁸ U beam. Isomers at N~82	Pfutzner / Gorska	10 Jul – 7 Jul 06	L. Caceres et al., PR <u>C79</u> (2009) 011301 (R); M. Gorska et al., PL <u>B672</u> (2009) 313.
6. S300; ²³⁸ U beam: A~110 isomers	Bruce	11 Dec – 7 Dec 06	
7. S313: ²⁰⁸ Pb beam active.; N→126	Regan / Benlliure	8 Mar -18 Mar 07	Zs. Podolyak et al., PL <u>B672</u> (2009) 116; N. Alkhomashi et al., PR <u>C80</u> (2009) 064308
8. S313: ²⁰⁸ Pb beam active. N \rightarrow 126	Benlliure / Regan	8 Jul –17 July 07	P.H. Regan et al., IJMP <u>E17</u> (2008) 8; A.I. Morales et al., Acta Phys. <u>B40</u> (2009) 867
9. S326: ⁷⁸ Kr beam, GT in A=62	Gadea / Algora	18 Jul –25 Jul 07	
10. S316: ⁵⁸ Ni beam; GT A=46:50:54	Fujita / Gelletly / Rubio	27 July –1 Aug 07	
11.S330: ¹²⁴ Xe beam: ¹⁰⁰ Sn + SIMBA	Faestermann / Gorska	5 Mar –26 Mar 08	
12. S347: ²³⁸ U beam; Z<82; N>126	Podolyak	27 Apr –3 May 08	N.Al-Dahan et al., PR <u>C80</u> (2009) 061302 (R)
13. S352: ¹²⁴ Xe beam; ^{96,8} Pd	Blazhev / Wadsworth / Liu / Boutachkov	5 Jun – 13 Jun 08	R Wadsworth et al., Acta Phys <u>B40</u> (2009) 611
14. S361: ²³⁸ U beam, ^{104,6} Zr	Bruce	17 Sep -20 Sep 09	16 successful experiments)
15. S337: ²³⁸ U beam, ¹³² Cd decay	Gadea	21 Sep-24 Sep 09	