
Fermi gas model

Introduction to Nuclear Science

Simon Fraser University
Spring 2011

NUCS 342 — February 2, 2011

NUCS 342 (Lecture 9) February 2, 2011 1 / 34



Outline

1 Bosons and fermions

2 The Fermi gas model

3 Infinitely deep potential well (again!)

4 Fermi momentum and energy

5 Average momentum and energy of a nucleon

NUCS 342 (Lecture 9) February 2, 2011 2 / 34



Outline

1 Bosons and fermions

2 The Fermi gas model

3 Infinitely deep potential well (again!)

4 Fermi momentum and energy

5 Average momentum and energy of a nucleon

NUCS 342 (Lecture 9) February 2, 2011 2 / 34



Outline

1 Bosons and fermions

2 The Fermi gas model

3 Infinitely deep potential well (again!)

4 Fermi momentum and energy

5 Average momentum and energy of a nucleon

NUCS 342 (Lecture 9) February 2, 2011 2 / 34



Outline

1 Bosons and fermions

2 The Fermi gas model

3 Infinitely deep potential well (again!)

4 Fermi momentum and energy

5 Average momentum and energy of a nucleon

NUCS 342 (Lecture 9) February 2, 2011 2 / 34



Outline

1 Bosons and fermions

2 The Fermi gas model

3 Infinitely deep potential well (again!)

4 Fermi momentum and energy

5 Average momentum and energy of a nucleon

NUCS 342 (Lecture 9) February 2, 2011 2 / 34



Bosons and fermions

Wave function for a two-particle system

For two non-interacting particles, each with mass m, in a potential
well V (x) the Shrödinger equation reads:

Eψ(x1, x2) = (E1 + E2)ψ(x1, x2) =

= (K1 + V1 + K2 + V2)ψ(x1, x2) =

=

(
− ~2

2m

d

dx1
+ V (x1)− ~2

2m

d

dx2
+ V (x2)

)
ψ(x1, x2)

The resulting wave function ψ(x1, x2) is a product of wave functions
resulting from a solution of the corresponding Shrödinger equation for
a single particle of mass m in the well V :

ψ(x1, x2) = ψα(x1)ψβ(x2)

For this solution the energy is

E = Eα + Eβ
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Bosons and fermions

Particle exchange transformation

Note that if
ψ(x1, x2) = ψα(x1)ψβ(x2)

is a solution of energy
E = Eα + Eβ

then
ψ′(x1, x2) = ψβ(x1)ψα(x2)

is a solution of energy

E ′ = Eβ + Eα = E

Wave functions ψ(x1, x2) and ψ′(x1, x2) are related by the exchange
of particles x1 � x2

ψ′(x1, x2) = ψ(x2, x1)
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Bosons and fermions

Indistinguishable particles

Atoms of the same element, nucleons, electrons, photons, and other
elementary particles are indistinguishable.

This implies that given the energy E = E ′ we can not truly
distinguish between the ψ(x1, x2) and the ψ′(x1, x2) solution of the
Shrödinger equation for a two-particle system.

The correct description of the system has to incorporate this fact into
the resulting wave function.
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Bosons and fermions

Bosons and fermions

Bosons are particles which are described by the wave function which
is symmetric with respect to exchange of any two particles

ψ(..., xp, ...xr ...) = ψ(..., xr , ...xp...)

Fermions are particles which are described by the wave function which
is antisymmetric with respect to exchange of any two particles.

ψ(..., xp, ...xr ...) = −ψ(..., xr , ...xp...)
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Bosons and fermions

A two-boson system

If two particles in the well V (x) we considered before are bosons we
need to combine the ψ(x1, x2) and ψ′(x1, x2) solutions into a wave
function symmetric with respect to particle exchange.

This solution is

φ(x1, x2) =
1√
2

(
ψ(x1, x2) + ψ′(x1, x2)

)
=

=
1√
2

(ψ(x1, x2) + ψ(x2, x1)) =

=
1√
2

(ψα(x1)ψβ(x2) + ψβ(x1)ψα(x2)) =

=
1√
2

(ψα(x1)ψβ(x2) + ψα(x2)ψβ(x1))

Note, that the energy for φ(x1, x2), ψ(x1, x2), and ψ′(x1, x2) is the
same E = Eα + Eβ.
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Bosons and fermions

A two-boson system

The bosonic wave function φ(x1, x2) contains correlations between
particles 1 and 2 which are absent in the wave function ψ(x1, x2) or
ψ′(x1, x2).

To see that let us examine a probability for two particles and two
bosons being at the same place x = x1 = x2:

ψ(x1 = x , x2 = x) = ψα(x)ψβ(x)

ψ′(x1 = x , x2 = x) = ψβ(x)ψα(x) = ψ(x1 = x , x2 = x)

φ(x1 = x , x2 = x) =
1√
2

(ψα(x)ψβ(x) + ψβ(x)ψα(x)) =

=
√

2ψα(x)ψβ(x) =
√

2ψ(x1 = x , x2 = x)

For two bosons probability of being at the same place is larger than
for independent particles. The symmetrization of the wave function
implies attraction between bosons.
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Bosons and fermions

A two-fermion system

If two particles in the well V (x) we considered before are fermions we
need to combine the ψ(x1, x2) and ψ′(x1, x2) solutions into a
invention antisymmetric with respect to particle exchange.

This solution is

χ(x1, x2) =
1√
2

(
ψ(x1, x2)− ψ′(x1, x2)

)
=

=
1√
2

(ψ(x1, x2)− ψ(x2, x1)) =

=
1√
2

(ψα(x1)ψβ(x2)− ψβ(x1)ψα(x2)) =

=
1√
2

(ψα(x1)ψβ(x2)− ψα(x2)ψβ(x1))

Note, that the energy for χ(x1, x2), ψ(x1, x2), and ψ′(x1, x2) is the
same E = Eα + Eβ.
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Bosons and fermions

A two-fermion system

The fermionic wave function χ(x1, x2) contains correlations between
particles 1 and 2 which are absent in the wave function ψ(x1, x2) or
ψ′(x1, x2).

To see that let us examine a probability for two particles and two
fermions being at the same place x = x1 = x2:

ψ(x1 = x , x2 = x) = ψα(x)ψβ(x)

ψ′(x1 = x , x2 = x) = ψβ(x)ψα(x) = ψ(x1 = x , x2 = x)

φ(x1 = x , x2 = x) =
1√
2

(ψα(x)ψβ(x)− ψβ(x)ψα(x)) = 0

For two fermions probability of being at the same place is zero. The
antisymmetrization of the wave function implies repulsion between
fermions.
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Bosons and fermions

A multi-boson system at zero temperature

At zero temperature all bosons will occupy the lowest state in the
potential well.

Bosonic attraction will result in a collapse of the system into a
coherent state of high density, so called Bose-Einstein condensate.

Observation of the Bose-Einstein condensate in cold atomic clouds
trapped with laser light led to the Nobel Prize in 1997.

The total energy of bosonic system at zero temperature is equal to
the number of bosons times the energy of the lowest state in the well.
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Bosons and fermions

A multi-fermion system at zero temperature

Fermions can not occupy the same state, even at zero temperature.

At zero temperature the first fermion sets in the lowest state in the
potential well, each next fermion sets in the lowest free state in the
well.

Consequently, n fermions occupy the n lowest-energy states in the
potential well.

The energy of the highest occupied state is called the Fermi energy.
At zero temperature all states up to the Fermi energy are occupied,
while all states above the Fermi energy are free.

The total energy of the system is equal to the sum of energies of the
occupied states.
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Bosons and fermions

Bosons and fermions at zero temperature
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Bosons and fermions

Spin-statistics theorem

Spin-statistic theorem says that:

particles with integer spins are bosons,

particles with half-integer spins are fermions.

For example

4He is a boson (true for isotopes with even neutron number),

3He is a fermion (true for isotopes with odd neutron number).
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The Fermi gas model

The Fermi gas model

The Fermi gas model defines properties of a system of non-interacting
fermions in an infinite potential well.

The model predicts gross properties of various quantum-mechanical
systems, for example electrons in metals, or nucleons in nuclei.

The model assumes that all fermions occupy the lowest energy states
available to them up to the Fermi energy, and that there is no
excitations across the Fermi energy (i.e. zero temperature).

In nuclei the model assumes that protons and neutrons are
independent fermion filling two separate potential wells.

The model assumes, however, common Fermi energy for the protons
and neutrons in stable nuclei.

If Fermi energy for protons and neutrons are different then the β
decay transforms one type of nucleons into the other until the
common Fermi energy (stability) is reached.
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Infinitely deep potential well (again!)

Infinitely deep potential well in three dimensions

Let us denote the dimensions of the well along the x , y and z
coordinates as Lx , Ly and Lz .

The wave functions are

Ψnx ,ny ,nz (x , y , z) = Ψnx (x)Ψny (y)Ψnz (z) = (1)

= sin(kxx) sin(kyy) sin(kzz) = sin(nxπ
x

Lx
) sin(nyπ

y

Ly
) sin(nzπ

z

Lz
)

Note that nx > 0, ny > 0 and nz > 0 otherwise Ψnx ,ny ,nz = 0.

The energies are

Enx ,ny ,nz =
π2~2

2m

n2
x

L2
x

+
π2~2

2m

n2
y

L2
y

+
π2~2

2m

n2
z

L2
z

=

=
π2~2

2m

(
n2
x

L2
x

+
n2
y

L2
y

+
n2
z

L2
z

)
(2)
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Infinitely deep potential well (again!)

Infinitely deep potential well in three dimensions

Recall that the components of the momentum of the particle are

px = ~kx = ~π
nx
Lx
, py = ~ky = ~π

ny
Ly
, pz = ~kz = ~π

nz
Lz

(3)

The energy is then

Enx ,ny ,nz =
p2
x

2m
+

p2
y

2m
+

p2
z

2m
=
π2~2

2m

(
n2
x

L2
x

+
n2
y

L2
y

+
n2
z

L2
z

)
(4)

And for simplicity we assume (unrealistically) Lx = Ly = Lz = L thus

Enx ,ny ,nz =
π2~2

2mL2

(
n2
x + n2

y + n2
z

)
(5)

NUCS 342 (Lecture 9) February 2, 2011 17 / 34



Infinitely deep potential well (again!)

Number of states

Let us denote the Fermi energy equal by EF .

The corresponding Fermi momentum is

EF =
p2
F

2m
=⇒ pF =

√
2mEF (6)

Let us count the number of occupied states up to the Fermi
momentum. For these states

p2
x + p2

y + p2
z < p2

F =⇒ π2~2

L2

(
n2
x + n2

y + n2
z

)
< p2

F (7)

To count the number of states we will use a trick. To use the trick we
need to note that Eq. 7 implies

n2
x + n2

y + n2
z <

p2
FL

2

π2~2
(8)
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Infinitely deep potential well (again!)

The trick

Here is the trick. For each combination of (nx , ny , nz) we have a
single spacial state.

The quantum numbers (nx , ny , nz) change by one. A change by a
unit in each direction define a cube of a unit volume. Thus we can
state that there is one spacial state per unit volume in the space
defined by (nx , ny , nz) quantum numbers.

Here is the crux: the volume in the (nx , ny , nz) space is limited by the
condition

n2
x + n2

y + n2
z <

p2
FL

2

π2~2
= R2 R =

pFL

π~
(9)

This condition defines a sphere with radius R in the (nx , ny , nz)
space.

The volume of the sphere is the number of states up to the Fermi
momentum since there is one state per unit volume.
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Infinitely deep potential well (again!)

The (nx , ny , nz space
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Infinitely deep potential well (again!)

The trick the right way

This looked so good again. Something must be wrong.

First, remember that nx > 0 and ny > 0 and nz > 0, thus we have to
take only 1/8 of the sphere cut by positive x, y, and z axes.

Next, nucleons have spins. Thus we have two states per unit volume
as defined by two orientation of spins.

With this corrections we can calculate the number of occupied states

n = 2
1

8

4

3
πR3 =

1

3
π

(
pFL

π~

)3

(10)

The Fermi momentum is

pF = ~ 3
√

3π2
3
√
n

L
= ~ 3
√

3π2 3

√
n

L3
= ~ 3
√

3π2 3

√
n

V
(11)
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Fermi momentum and energy

The Fermi momentum

We have calculated the Fermi momentum pF in terms of the density
of states n/V

pF = ~ 3
√

3π2
3
√
n

L
= ~ 3
√

3π2 3

√
n

L3
= ~ 3
√

3π2 3

√
n

V
(12)

Let us push it further assuming for the number of state the number of
protons Z and for the volume

V =
4

3
π
(
r0A

1
3

)3
=

4

3
πr3

0A (13)

This implies

pF = ~ 3
√

3π2 3

√
n

V
=

~
r0

3

√
32π

4
3

√
Z

A
(14)
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Fermi momentum and energy

Estimate for the Fermi momentum

The Fermi momentum for protons is

pF =
~
r0

3

√
32π

4
3

√
Z

A
(15)

The Fermi momentum for neutrons is

pF =
~
r0

3

√
32π

4
3

√
A− Z

A
(16)

Assuming Z/A ∼ 1/2 and r0 = 1.2 fm the estimate for the Fermi
momentum is

pF =
~
r0

3

√
32π

4
3

√
Z

A
≈ 250 [MeV/c] (17)

This corresponds to the speed

βF =
vF
c
≈ pF c

mpc2
≈ 250

940
= 0.27 (18)
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Fermi momentum and energy

Estimate of the Fermi energy

Fermi energy can be estimated from the Fermi momentum.

Fermi energy depends on the density of states and is different for
protons and for neutrons since in general there is a different number
of particles in the proton and neutron well.

The Fermi energy for protons is

EF =
p2
F

2mp
=

(~c)2

2r2
0mpc2

(
9π

4

) 2
3
(
Z

A

) 2
3

(19)

The Fermi energy for neutrons is

EF =
p2
F

2mn
=

(~c)2

2r2
0mnc2

(
9π

4

) 2
3
(
A− Z

A

) 2
3

(20)

For the case of even number of protons and neutrons
Z/A ≈ (A− Z )/A ≈ 1/2 and r0 = 1.2 fm the Fermi energy is
EF ∼ 33 MeV.
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Fermi momentum and energy

The depth of the nuclear potential well

From the Fermi energy we know (approximately) the energy difference
between the bottom of the potential well and the energy of the
highest occupied state.

We also know from the binding energies that the last nucleon is
bound by approximately 8 MeV.

From that we can conclude that the depth of the nuclear potential
well is approximately 33+8=41 MeV.

We get the same depth for protons and neutron since we assumed the
equal number of both.

If we take into account the fact that the difference in the number of
protons and neutrons we will get different depths of the potential
wells for each species.
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Fermi momentum and energy

The depth of the nuclear potential well
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Fermi momentum and energy

The depth difference for protons and neutrons

The potential depth difference comes out from the dependence of the
Fermi energy on the number of protons or neutrons.

The difference in depth is a consequence of the Coulomb repulsion
between the protons.

Note the difference between the depth of the potential well and the
Fermi level (energy of the highest occupied state).

In stable nuclei the Fermi level is at the same energy for protons in
neutrons. In such a case there is no energy gain from transforming
one type of nucleons into another by β decay.

In unstable nuclei the Fermi level is different for protons and
neutrons, this opens a path to transform nucleons from one well to
the other through β decay.

The β decay proceeds until Fermi levels in both wells are equal.
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Fermi momentum and energy

The Fermi level

Fermi level for protons in neutrons
in stable nuclei (a) and in unstable nuclei (b).
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Average momentum and energy of a nucleon

Average momentum of a nucleon

The average momentum of a nucleon depends on the density of
momentum states which is the number of momentum states dn for a
particle with momentum p and p + dp.

We can calculate this number using a similar trick to what we used to
calculate the number of states up to the Fermi momentum.

Let us consider the space defined by the quantum numbers
(nx , ny , nz). We argued there are two momentum states per unit
volume in this space.

Particles with momentum between p and p + dp define a spherical
shell with radius R = pL/π~ and thickness dR = dpL/π~ in this
space with volume

V = 4πR2dR = 4π

(
L

π~

)3

p2dp =
4V

π2~3
p2dp (21)
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Average momentum and energy of a nucleon

Average momentum of a nucleon

To get the number of states we need to remember that the condition
for nx > 0, ny > 0 and nz > 0 requires that we take 1/8 of the
volume V, and that we also need to multiply V by 2 to account for
two spins state of the nucleon.

The density of states is

dn = 2
1

8
V =

1

4

4V

π2~3
p2dp =

V

π2~3
p2dp

dn

dp
=

V

π2~3
p2 (22)

The average momentum of a nucleon is

pav =

∫ pF
0 p dn

dpp
2dp∫ pF

0
dn
dpp

2dp
=

∫ pF
0 p3dp∫ pF
0 p2dp

=
3

4
pF ≈ 188 MeV (23)
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Average momentum and energy of a nucleon

The average energy of a nucleon

Watch out! The average energy is not the energy for the average
momentum!

To calculate the average energy we need to know the density of
energy state, which is the number of states for a particle with energy
between E and dE .

We can get this number from the density of the momentum states

dn =
V

π2~3
p2dp

E =
p2

2m
=⇒ p2 = 2mE =⇒ pdp = mdE

dp =
mdE√
2mE

=

√
m

2

dE√
E

dn =
√

2
V

π2~3
m

3
2

√
EdE (24)
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Average momentum and energy of a nucleon

The average energy of a nucleon

The average energy of a nucleon is

Eav =

∫ EF

0 E dn
dE dE∫ EF

0
dn
dE dE

=

∫ EF

0 E
3
2 dE∫ EF

0 E
1
2 dE

=
3

5
EF ≈ 20 MeV (25)

The energy which corresponds to the average momentum is

E ′ =
p2
av

2m
=

9

16

p2
F

2m
=

9

16
EF ≈ 18.6 MeV (26)
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Average momentum and energy of a nucleon

Total energy in a nucleus

Knowing the average energy of a nucleon we can calculate the total
energy of a nucleus

Etot = NE νav + ZEπav = N
3

5
E νF + Z

3

5
EπF (27)

Assuming for simplicity equal mass for a proton and a neutron

Etot =
3

10

(
9π

4

) 2
3 ~2c2

mc2r2
0

N
5
3 + Z

5
3

A
2
3

(28)

Let us investigate the term which depends on N, Z and A further as
it leads to some interesting consequences.
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Average momentum and energy of a nucleon

Total energy in a nucleus

The term dependent on N, Z and A expands to

N
5
3 + Z

5
3

A
2
3

= A

(
1 +

5

9

(
N − Z

A

)2
)

(29)

Therefore the total energy has two terms

Etot =
3

10

(
9π

4

) 2
3 ~2c2

mc2r2
0

A +
1

6

(
9π

4

) 2
3 ~2c2

mc2r2
0

(
N − Z

A

)2

(30)

The first term corresponds to the volume term in the liquid drop
model while the last one corresponds to the symmetry energy term in
the liquid drop model.

Therefore, based on the Fermi model we can conclude that the
symmetry energy term in the liquid drop model is a quantum
mechanical effect related to the way fermion occupy allowed states in
the proton/neutron potential well.

NUCS 342 (Lecture 9) February 2, 2011 34 / 34


	Bosons and fermions
	The Fermi gas model
	Infinitely deep potential well (again!)
	Fermi momentum and energy
	Average momentum and energy of a nucleon

