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One-dimensional Schrödinger equation The wave function

Description of a quantum-mechanical system

Evolution of a non-relativistic quantum-mechanical system is
described by the Shrödinger equation.

In its most general form the Shrödinger equation is the second-order
differential equation in space coordinates and the first-order
differential equation in the time coordinate.

For interactions constant in time, which are defined by the potential
energy V , the Schödinger equation represents conservation of energy:

E = K + V =
p2

2m
+ V (1)

The difference from the classical description is a consequence of the
fact that p2 in quantum mechanics is a differential operator

p2 = − ~2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
(2)
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One-dimensional Schrödinger equation The wave function

Wave function for a single particle

Let us consider a single particle in one dimension.

Let the interactions be defined by the potential energy V (x)

The probability for a particle to be located at position x is defined by
| ψ(x) |2 with ψ(x) being a solution of the Shrödinger equation

Eψ(x) = (K + V )ψ(x) = − ~2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) (3)

Energy E is a constant, the equation can be re-written as

d2ψ(x)

dx2
= −2m

~2
(E − V (x))ψ(x) (4)

The last equation has a simple solution for a constant potential

V (x) = const. (5)
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One-dimensional Schrödinger equation Constant potential

Constant potential: E > V

Let us consider a constant potential V (x) = V . In this case the
Shrödinger equation can be written as

d2ψ(x)

dx2
= −2m

~2
(E − V )ψ(x)

For the case of E > V one can define

k2 =
2m

~2
(E − V ), ~k =

√
2m(E − V )

The equation reads

d2ψ(x)

dx2
= −k2ψ(x)

The solution, called a plane wave solution, is

ψ(x) = A sin(kx) + B cos(kx)
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One-dimensional Schrödinger equation Constant potential

Constant potential: normalization

A constrain for constants A and B in the plane wave solution is
imposed by the wave function normalization condition

| ψ(x) |2= 1

Let us consider the special case of B = 0. The normalization
condition for A reads

1 =| ψ(x) |2=

∫ ∞
=∞

A2 sin2(kx)dx = A2

∫ ∞
−∞

sin2(kx)dx

But the integral
∫∞
−∞ sin2(kx)dx diverges, thus a plane wave solution

can not be normalized in the full space.

However, plane wave solution can be normalized if the spacial
dimensions are restricted, yielding finite limits for the integration.
Such restriction leads to a “particle in a well” model discussed later.
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One-dimensional Schrödinger equation Constant potential

Constant potential: E < V

For the case of E < V one can define

κ2 =
2m

~2
(V − E ), ~κ =

√
2m(V − E )

The equation reads

d2ψ(x)

dx2
= κ2ψ(x)

The solution is

ψ(x) = C exp(−κx) + D exp(κx)

Note that this solution diverges very rapidly with increasing x if
D 6= 0 or for decreasing x if C 6= 0.
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One-dimensional Schrödinger equation Potential step

Potential step

Let us consider a potential step

V =

{
0 x < 0
−V0 x ≥ 0

The strategy for solving the Shrödinger equation is to

obtain two solutions, ψ<(x) for x < 0, and ψ>(x) for x ≥ 0
match the solution on the step, at x = 0 in such a way that the wave
function and its derivative is continues on the step

ψ<(0) = ψ>(0)

dψ<

dx
(0) =

dψ>

dx
(0)
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One-dimensional Schrödinger equation Potential step

Potential step, E > 0

For E > 0 the solutions are

ψ<(x) = A< sin(k<x) + B< cos(k<x) ~k< =
√

2mE

ψ>(x) = A> sin(k>x) + B> cos(k>x) ~k> =
√

2m(E + V )

note that the wavelength is shorter for x > 0 reflecting larger
momentum in this region ~k> > ~k<.

The continuity conditions require that

ψ<(0) = ψ>(0) =⇒ B< = B>

dψ<

dx
(0) =

dψ>

dx
(0) =⇒ k<A< = k>A>

For numerical solution see this link.
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One-dimensional Schrödinger equation Potential step

Potential step, −V0 < E < 0

For −V0 < E < 0 the solutions are

ψ<(x) = D exp(κx) ~κ =
√
−2mE

ψ>(x) = A sin(kx) + B cos(kx) ~k =
√

2m(E − V0)

note that C exp(−κx) should not be included as it diverges with
x → −∞.

The continuity conditions require that

ψ<(0) = ψ>(0) =⇒ B = D

dψ<

dx
(0) =

dψ>

dx
(0) =⇒ kA = κD

For numerical solution see this link. Note the wave function
penetrating into the step.
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One-dimensional Schrödinger equation Potential barrier

Potential barrier

For numerical solution see this link.
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One-dimensional Schrödinger equation Potential well

Potential well

In the case of the potential well one seeks solutions in three regions.

Continuity equations of the wave function and its first derivative have
to be applied on the boundaries between regions I and II and regions
II and III.
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One-dimensional Schrödinger equation Potential well

Potential well: unbound states

For numerical solution see this link.
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One-dimensional Schrödinger equation Potential well

Potential well: bound states

Continuity conditions for bound states lead to quantization of states.

For numerical solution see this link.
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One-dimensional Schrödinger equation Infinitely deep potential well

Infinitely deep potential well

If the well is infinitely deep the continuity equations require that the wave
function vanishes on the boundaries.
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One-dimensional Schrödinger equation Infinitely deep potential well

Infinitely deep potential well

For the well on the graph

ψ(0) = 0 ψ(L) = 0 =⇒ ψ(x) = A sin(
nπ

L
x)

But at the same time

ψ(x) = A sin(kx) ~k =
√

2mE

This leads to

k =
1

~
√

2mE =
nπ

L
or

E = n2 π
2~2

2mL2
= n2E1 E1 =

h2

8mL2

Note that the wave function for the ground state is symmetric with
respect to the middle of the well (has positive parity), for the next
state the wave function is asymmetric (has negative parity) etc.

NUCS 342 (Lecture 4) January 24, 2011 16 / 32



One-dimensional Schrödinger equation Harmonic oscillator

Harmonic oscillator

E = ~ω(n + 1
2 ) = hν(n + 1

2 ) = E0(n + 1
2 )
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One-dimensional Schrödinger equation Harmonic oscillator

Harmonic oscillator

Wave functions

Probabilities
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Three-dimensional Schrödinger equation Separation of variables

A step to three dimensions

In one dimension the Schrödinger equation is a differential equation of
a single variable: the single position coordinate of a particle.

In three dimensions there are three coordinates defining position of a
particle.

Thus the Schrödinger equation relevant to nuclear and atomic
sciences (thus also to Chemistry) is a partial second-order differential
equation of (at least) three variables: the three position coordinates
of a particle.

Note that for particles with spin, the Schrödinger equation may
depend on spin orientation. We are not going to consider such cases
today, but we will come back to an example later.
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Three-dimensional Schrödinger equation Separation of variables

Separation of variables

In general, it is easier to solve three separate differential equations of
a single variable, than a single differential equation of three variables.

The complication in the latter case comes from the correlations
between variables. It is easier to handle uncorrelated variables which
do not impact each other rather than correlated variables which are
coupled together.

This observation leads to a strategy in solving differential equations
named separation of variables. This strategy attempts to find a set of
variables which describe the case of interest (position of a particle)
but lead to separation of the equation of interest (the Schrödinger
equation) into a set of decoupled equations of a single variable.

For atoms and nuclei (potential dependent on the distance V (r)) this
is achieved using a set of spherical rather than Cartesian coordinates.
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Three-dimensional Schrödinger equation Separation of variables

The spherical coordinates

r =
√
x2 + y2 + z2

cos θ =
z√

x2 + y2

tanφ =
y

x

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ (6)

NUCS 342 (Lecture 4) January 24, 2011 21 / 32



Three-dimensional Schrödinger equation Separation of variables

The Schrödinger equation is spherical coordinates

Nuclear and atomic potential depends on a distance

V = V (r) = V (
√
x2 + y2 + z2) (7)

Three-dimensional Schrödinger equation in Cartesian coordinates is:

Eψ(x , y , z) = − ~2

2m

[
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

]
ψ(x , y , z)

+ V (x , y , z)ψ(x , y , z) (8)

Three-dimensional Schrödinger equation in spherical coordinates is:

Eψ(r , θ, φ) =

− ~2

2m

[
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2

]
ψ(r , θ, φ)

+V (r)ψ(r , θ, φ) (9)
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Three-dimensional Schrödinger equation The orbital part

The azimuthal equation

The first step in solving Eq. 9 is to separate the azimuthal equation
which depends only on the azimuthal coordinate φ.

As a consequence of this separation, the wave function ψ(r , θ, φ
separates into a product of the azimuthal wave function Φm(φ) and a
wave function which depends on r and θ.

The equation for the azimuthal wave function reads

d2Φm(φ)

dφ2
= −m2Φm(φ) (10)

The solutions are

Φm(φ) = exp(−imφ) = cos(mφ)− i sin(mφ) (11)

with m called the azimuthal quantum number is an integer.
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Three-dimensional Schrödinger equation The orbital part

The azimuthal quantum number

The fact that the azimuthal quantum number is an integer follows
from the condition that the rotation over the full angle brings the
system into the same orientation.

Φm(φ+ 2π) = cos(m(φ+ 2π))− i sin(m(φ+ 2π)) =

= cos(mφ)− i sin(mφ) = Φm(φ) (12)

if m is an integer.
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Three-dimensional Schrödinger equation The orbital part

The orbital equation

The next step in solving Eq. 9 is to separate the orbital equation
which depends only on the variable θ and the value of the azimuthal
quantum number m. For the solution function Pl ,m(θ):

1

sin θ

d

dθ

(
sin θ

dPl ,m(θ)

dθ

)
− m2

sin2 θ
Pl ,m(θ) = l(l + 1)Pl ,m(θ) (13)

Note that the orbital equation does not depend on the azimuthal
coordinate φ, however, it does depend on the azimuthal quantum
number m.

As a consequence, there is a different solution of the orbital equation
for different value of m.

The integer number l ≤| m | is called the orbital quantum number.
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Three-dimensional Schrödinger equation The orbital part

Spherical harmonics

The functions
Yl ,m(θ, φ) = Pl ,m(θ, φ)Φm(φ) (14)

are called spherical harmonics.

These are functions of the polar (θ) and azimuthal (φ) angles in
spherical coordinates which correspond to the solution of the orbital
and azimuthal part of the Schrödinger equation.

A spherical harmonic Yl ,m(θ, φ) corresponds to an orbital motion with
squared angular momentum L2 = l(l + 1)~2 and the projection of the
angular momentum on the quantization axis of Lz = m~.

In a hydrogen atom as well as in a nucleus spherical harmonics define
angular shapes of the orbitals for single particle motion with quantum
numbers corresponding to their order.
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Three-dimensional Schrödinger equation The orbital part

Spherical harmonics
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Three-dimensional Schrödinger equation The radial part

The radial equation

The last step in solving Eq. 9 is to separate the radial equation which
depends only on the variable r and the value of the orbital angular
momentum quantum number l . For the solution function Rn,l(r)

d

dr

(
r2 dRn,l(r)

dr

)
+

2mr2

~2
(E − V (r))Rn,l(r) = l(l + 1)Rn,l(r) (15)

Note, that the radial equation depends on the energy E and on the
potential V (r) which is not the case for the orbital and azimuthal
equations.

Note also that the radial equation depends only on the variable r but
not on θ and φ. However, it does depend on the angular momentum
quantum number l . This means that there are different solutions for
different value of l .

Also note that the radial equation does not depend on the azimuthal
quantum number m.
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Three-dimensional Schrödinger equation The radial part

The role of the potential

The radial equation depends on the potential V (r).

In particular, if the Coulomb potential for and interaction between a
proton and an electron is used

V (r) = − 1

4πε0

Ze2

r
(16)

the solutions describe the hydrogen atom and define the atomic shell
model.

If the nuclear potential is used the solutions describe nuclei and define
the nuclear shell model.

Note that in both cases the orbital part which depends on angles θ
and φ is the same, given by spherical harmonics Yl ,m(θ, φ).
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Three-dimensional Schrödinger equation The radial part

The nuclear potential

So far everything is fine, except for the fact that we did not discuss
what the nuclear potential is and where does it come from.

This is an important point since the nuclear case is different than the
atomic one.

We are going to address this point at the start of the next lecture.
For now let us assume a potential which is attractive and proportional
to nuclear density distribution.

Often used is potential proportional to the Fermi function called the
Wood-Saxon potential.

Another frequent choice is a harmonic oscillator potential (note,
however, that harmonic oscillator describes an infinitely deep potential
which is not the case for nuclei.)
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Three-dimensional Schrödinger equation The radial part

The Wood-Saxon potential

V (r) = −V0
1

1+exp( r−R
a )

V0 ≈ 50 [MeV] R = 1.1× A
1
3 [fm] a = 0.5 [fm] (17)
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Three-dimensional Schrödinger equation The radial part

Solutions for the nuclear potential

Bound (E < 0) solutions of the Schrödinger equation with the nuclear
potential are quantized.

The energies are defined by the principle quantum number n and the
orbital quantum number l .

The energies do not depend on the azimuthal quantum number m.

The energies are bunched into shells: the regions of high number of
states (shells) are separated by regions withouth states (shell gaps).

The wavefunctions are given by the product of the radial wave
function and a spherical harmonics

ψn,l ,m(r , θ, φ) = Rn,l(r)Yl ,m(θ, φ) (18)
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