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Towards the deformed shell model

We learnt in the previous lecture that residual pairing interactions in
nuclei couple nucleons of the same kind occupying the same orbitals
into pairs of zero spin and positive parity.

We also said that residual proton-neutron interaction leads to
configuration mixing and drives a nucleus towards deformation.

The data supports this hypothesis, we considered the systematics of
the energy of the first excited state in nuclei near Z=50 as an
evidence, another one comes from a complete failure of the spherical
shell model in predicting spins of nuclei far from the magic numbers.

Therefore, let us analyze impact of the deformation on a nuclear
system and develop tools to deal with non-spherical shapes and shells.

We will start with a non-spherical infinitely deep potential well which
captures all important feature of a deformed shell model.
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Infinitely deep potential well in one dimension

If the well is infinitely deep the Schrödinger equation requires that the
wave function vanishes on the boundaries.
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Infinitely deep potential well in one dimension

For the well on the graph

ψ(0) = 0 ψ(L) = 0 =⇒ ψ(x) = A sin(
nπ

L
x)

But at the same time

ψ(x) = A sin(kx) ~k =
√

2mE

This leads to

k =
1

~
√

2mE =
nπ

L
or

E = n2 π
2~2

2mL2
= n2E1 E1 =

h2

8mL2

Note that the wave function for the ground state is symmetric with
respect to the middle of the well (has positive parity), for the next
state the wave function is asymmetric (has negative parity) etc.
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Infinitely deep potential well in three dimensions

In a Cartesian space the coordinates x , y and z are independent of
each other.

Therefore we can think about a three-dimensional infinitely deep
potential well as about three independent wells constraining particle
motion along each of the independent coordinate.

A consequence of that fact is separation of variables in the
Schrödinger equation, the three-dimensional equation can be split
into three one-dimensional equations.

The wave function is a product of three one-dimensional wave
function, each being a solution for the one-dimensional equation for
each of the coordinates.

The energy is the sum of three energies corresponding to the solution
for the one-dimensional equation for each of the coordinates.
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Separation of variables

For the potential

V (x , y , z) = V (x) + V (y) + V (z) (1)

For the wave function

Ψ(x , y , z) = Ψ(x)Ψ(y)Ψ(z) (2)

For the equation

EΨ(x , y , x) =

{
− ~2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
+ V (x , y , z)

}
Ψ(x , y , z) =

= Ψ(y)Ψ(z)

(
− ~2

2m

d2

dx2
+ V (x)

)
Ψ(x) +

Ψ(x)Ψ(z)

(
− ~2

2m

d2

dy2
+ V (y)

)
Ψ(y) +

Ψ(x)Ψ(y)

(
− ~2

2m

d2

dz2
+ V (z)

)
Ψ(z) (3)
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Infinitely deep potential well in three dimensions

Let us denote the dimensions of the well along the x , y and z
coordinates as Lx , Ly and Lz .

The wave functions are

Ψnx ,ny ,nz (x , y , z) = Ψnx (x)Ψny (y)Ψnz (z) =

= sin(nxπ
x

Lx
) sin(nyπ

y

Ly
) sin(nzπ

z

Lz
) (4)

Note that nx > 0, ny > 0 and nz > 0 otherwise Ψnx ,ny ,nz = 0.

The energies are

Enx ,ny ,nz =
π2~2

2m

n2
x

L2
x

+
π2~2

2m

n2
y

L2
y

+
π2~2

2m

n2
z

L2
z

=

=
π2~2

2m

(
n2
x

L2
x

+
n2
y

L2
y

+
n2
z

L2
z

)
(5)
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Spherical infinitely deep potential well in three dimensions

Spherical infinitely deep potential well in three dimensions

Note that for Lx = Ly = Lz = L the well has spherical symmetry.

The energies are

Enx ,ny ,nz =
π2~2

2mL

(
n2
x + n2

y + n2
z

)
= E0

(
n2
x + n2

y + n2
z

)
(6)

with E0 = π2~2

2mL

Let us denote a state with a set of quantum numbers nx , ny and nz
as (nx , ny , nz).

For the ground state nx = ny = nz = 1 the label is (1, 1, 1) and
energy is E(1,1,1) = 3E0.

Next there are three excited state of the same energy with quantum
numbers (1, 1, 2), (1, 2, 1) and (2, 1, 1). The energies are
E(1,1,2) = E(1,2,1) = E(2,1,1) = 6E0
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Spherical infinitely deep potential well in three dimensions

Degenerate states

Let us have a closer look at the three states at energy E = 6E0.

The quantum numbers (1, 1, 2), (1, 2, 1) and (2, 1, 1) indicate that
they have a different quantum numbers, thus, they have different
wave functions.

Different wave functions indicate different states. But for
Lx = Ly = Lz = L the energy E = E0(n2

x + n2
y + n2

z) is the same for
all three states. States of different wave function but the same energy
are called degenerate states.

The level of degeneracy is the number of states at a given energy. For
states at the energy E = 6E0 the level of degeneracy is three.

Note that the next level is also degenerate with the level of
degeneracy of three, quantum numbers (2, 2, 1), (2, 1, 2) and (1, 2, 2)
and energy E = 9E0.
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Spherical infinitely deep potential well in three dimensions

Spherical infinitely deep potential well in three dimensions

Here are the parameters of low-energy states in spherical infinitely
deep potential well in three dimensions

Energy Degeneracy Quantum numbers

3E0 1 (1, 1, 1)
6E0 3 (1, 1, 2), (1, 2, 1), (2, 1, 1)
9E0 3 (2, 2, 1), (2, 1, 2), (1, 2, 2)

11E0 3 (1, 1, 3), (1, 3, 1), (3, 1, 1)
12E0 1 (2, 2, 2)

In this model the energies are the energies of the major shells, the
degeneracy defines the number of particles or occupancy of the shell.

The most important consequence of the deformation is a change in
energy and the level of degeneracy of shells.

The deformation destroys spherical shell gaps and open new gaps and
different magic numbers.
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Axial infinitely deep potential well in three dimensions

Deformed shapes

The simplest deviation from spherical symmetry is for one dimension
of the well to be different of the other two, with the other two being
equal.

This corresponds to axially symmetric potential well with the
non-equal dimension being along the symmetry axis, and the other
two dimension being perpendicular to the symmetry axis.

Traditionally, the symmetry axis is taken as the z axis of the
coordinate frame Lz 6= Lx = Ly .

We can distinguish two cases of axial deformation, prolate
Lz > Lx = Ly and oblate Lz < Lx = Ly .

These are the cases we are going to analyze. There is also the triaxial
case Lz 6= Ly 6= Lx which is absolutely legitimate, but we have no
time to analyze it.
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Axial infinitely deep potential well in three dimensions

Axial infinitely deep potential well in three dimensions

Let us define Lx = Ly = L.

For convenience it is also good to define a single parameter α which
measures how different is the Lz from L. Let us do it in this way(

L

Lz

)2

= 1− α (7)

Here is why. The energy for the axially deformed well is

Enx ,ny ,nz =
π2~2

2m

n2
x

L2
x

+
π2~2

2m

n2
y

L2
y

+
π2~2

2m

n2
z

L2
z

=

=
π2~2

2mL

(
n2
x + n2

y + n2
z

(
L

Lz

)2
)

= (8)

= E0(n2
x + n2

y + n2
z(1− α)) = E0(n2

x + n2
y + n2

z − n2
zα)
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Axial infinitely deep potential well in three dimensions

Axial infinitely deep potential well in three dimensions

Note that the energy for the deformed well is a sum of the energy ES

for the spherically symmetric well plus the deformation energy ED

which depends on the parameter α

Enx ,ny ,nz = E0(n2
x + n2

y + n2
z − n2

zα) = ES + ED

ES = E0(n2
x + n2

y + n2
z)

ED = = −αn2
zE0 (9)

For α=0 the energy sequence of the spherically symmetric well is
recovered

For α 6= 0 the degeneracy of levels is changed.

Consider the (1, 1, 2), (1, 2, 1), (2, 1, 1) states degenerate at 6E0 for
spherical symmetry. The deformation term will impact the (1, 1, 2)
differently than the (2, 1, 1) and (1, 2, 1) states as the nz quantum
number is different for the (1, 1, 2) than for (2, 1, 1) and (1, 2, 1)
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Axial infinitely deep potential well in three dimensions

Axial infinitely deep potential well in three dimensions
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Axial infinitely deep potential well in three dimensions

Why does the energy change?

Recall that the energy is directly proportional to the frequency of the
wave function or inversely proportional to the wave length.

The wave function has nodes at the boundaries of the well, thus the
wave length is define by the size of the well.

If the well gets larger the wave length of the wave function increases,
the frequency decreases and energy is reduced.

In a contrary, if the well size decreases the wave length decreases, the
frequency increases and the energy increases.

Recall that

Lz = L
1√

1− α
≈ L(1 +

1

2
α) (10)

thus for positive α the well becomes prolate, the Lz increases and
energy decreases, while for the negative α Lz decreases and energy
increases.
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Axial infinitely deep potential well in three dimensions

Why atoms do not deform?

If deformation reduces energy of a system why atoms do not deform?
Indeed, all atoms are found to be spherical, but the deformed shell
model features we investigated are generic. Should they be applicable
to atoms as well?

The answer is in the central role and tiny size of a nucleus.

Since the force bounding atom comes from the nucleus and this force
dominates any other forces, if this force has spherical symmetry the
whole atom does.

Object of any shape when looked from afar looks point-like. A point
has the same symmetry as a sphere.

This is the case for nucleus in atoms. Even if deformed it is separated
by electrons by a large distance, so the impact of the nuclear
deformation on the shape of an atom is minimal. However, there is an
impact on the structure of the atomic levels (hyperfine structure).
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Axial infinitely deep potential well in three dimensions

Why atoms do not deform?

The size of the atom is ∼0.1 [nm] the size of a nucleus
∼1 [fm]=10−4 [nm]. Thus electrons are separated from a nucleus by
a distance which is ∼10000 times larger than the nucleus.

Nuclear deformation is not larger than the size of a nucleus.

On average for an electron to see a nucleus deformed it is similar for a
human being to see a deformation of a soccer ball (1 foot in
diameter) from a plane being 10000 feet above the ground.

Good luck.
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Axial infinitely deep potential well in three dimensions

What is wrong with what we have done so far?

We obtained a very nice and hopefully reasonably easy to understand
figure showing the change of magic numbers as a function of
deformation parameter α.
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But is this figure right?

The answer is negative. We have forgotten a very important point:
the volume conservation.
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Axial infinitely deep potential well in three dimensions

Volume conservation

In previous lectures we discussed incompressibility of nuclear matter.

This implies that nuclear deformation has to conserve volume.

The deformation we considered so far made one of the dimensions of
the well longer or shorter while keeping the other two together.

This deformation does not conserve the volume.

To conserve the volume when axially deforming the well we need to
make the dimensions perpendicular to the symmetry axis shorter when
the dimension along the axis gets longer, or the other way around.

This implies that all three axes need to change the length while
deformation occurs.

Change of the axes length has a direct impact on state energies.
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Axial infinitely deep potential well in three dimensions

Volume conservation

The volume of the well is

Vx ,y ,z = Lx ∗ Ly ∗ Lz (11)

Let us take as a reference the volume of the undeformed sphere

V = L3 (12)

this is the volume to be conserved.

Let us define the length of the dimensions parallel and perpendicular
to the deformation axis

L‖ = Lz

L⊥ = Lx = Lz (13)
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Axial infinitely deep potential well in three dimensions

Volume conservation

The volume conservation calls for

Vx ,y ,z = Lx ∗ Ly ∗ Lz = L2
⊥ ∗ L‖ = L3 = V (14)

Since (
L

L‖

)2

=

(
L

Lz

)2

= 1− α or
L

L‖
=
√

1− α (15)

the volume conservation implies

L⊥
L

=

√
L

L‖
= 4
√

1− α (16)
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Axial infinitely deep potential well in three dimensions

Volume conservation

The energies including volume conservation conditions are

Enx ,ny ,nz =
π2~2

2m

n2
x

L2
x

+
π2~2

2m

n2
y

L2
y

+
π2~2

2m

n2
z

L2
z

=

=
π2~2

2mL

(
n2
x

(
L

L⊥

)2

+ n2
y

(
L

L⊥

)2

+ n2
z

(
L

L‖

)2
)

=

= E0

(
(n2

x + n2
y )

1√
1− α

+ n2
z(1− α)

)
(17)

Volume conservation changes the diagram, in particular, the energies
as a function of deformation are not linear any more.

Things get complicated, but for a reason.
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Axial infinitely deep potential well in three dimensions

Axial infinitely deep potential well in three dimensions

without volume conservation
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Axial infinitely deep potential well in three dimensions

Axial infinitely deep potential well in three dimensions

with volume conservation
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Axial infinitely deep potential well in three dimensions

Axes ratio

The deformation parameter α which we used may not be the most
intuitive to think about (although it was useful).

Something more intuitive is the axes ratio.

Let us express the axes ratio as a function of α

L

L‖
=
√

1− α

L⊥
L

= 4
√

1− α

L⊥
L‖

=
√

1− α 4
√

1− α = 4

√
(1− α)3

L‖
L⊥

=
1

4
√

(1− α)3
(18)
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Axial infinitely deep potential well in three dimensions

Axes ratio as a function of α
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Axial infinitely deep potential well in three dimensions

Axial infinitely deep potential well in three dimensions

with volume conservation as a function of axis ratio
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The Nilsson model

The Nilsson model

What we have done for the three dimensional potential well has been
done with a great success for nuclear harmonic oscillator potential in
3 dimensions including the flat bottom correction and spin-orbit terms
to model deformed nuclear potential

The deformed shell model he developed is often referred to as the
Nilsson model.

As for the three dimensional potential well the Nilsson model predicts
that shells and shell gaps are modified by the deformation.

The main achievement of the Nilsson model is correct explanation of
ground state spins and parities of a large number of nuclei, as well its
ability to be expanded into a model for rotation of deformed
odd-mass nuclei (later this week).
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The Nilsson model

Three dimensional deformed harmonic oscillator

Note: without volume conservation, flat bottom or spin-orbit splitting.
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The Nilsson model

The total angular momentum in Nilsson model

One of the consequence of deformation is configuration mixing. For
example the d5/2 and the d3/2 states which are separate for the
spherical shell model mix in the Nilsson model.

As a consequence of mixing the total angular momentum does not
have a well defined value in a deformed shell model, for example for a
mixture of d5/2 and the d3/2 states the total angular momentum is a

mixture of j = 5
2 and j = 3

2

However, in the axially-symmetric Nilsson model deformation the
projection of the total angular momentum on the symmetry axis
(analogues to the magnetic m-quantum number) has a well defined
half-integer value.

This quantum number in the Nilsson model is referred to as Ω.
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The Nilsson model

The Ω quantum number

The Ω quantum number defines the overlap of the orbital with the
deformed core.

Since the potential is attractive large overlap results in energy gains
(lowering of state energy) small overlap results in increased energy.
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The Nilsson model

Nilsson model energy splitting
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The Nilsson model

The Nilsson diagram
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The Nilsson model

The Nilsson diagram
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