Superschwere Elemente

Geschichte der Erzeugung der schweren Elemente (1898 – 1974)

Energiebilanz der schweren Elemente

Schwere Kerne können durch Spaltung zerfallen!

Energie eines Ellipsoiden im Tröpfchenmodell

$$R = R_0 \left(1 + \sum_{\mu} \alpha_{\mu} Y_{2\mu} (\theta, \Phi) \right)$$

Oberflächenenergie

$$E_s = a_s A^{2/3} \left(1 + \frac{2}{5} \varepsilon^2 \right)$$

Coulombenergie

$$E_C = a_C Z^2 A^{-1/3} \left(1 - \frac{1}{5} \varepsilon^2 \right)$$

Achsen des Ellipsoiden

$$a = R(1+\varepsilon)$$
 $b = R(1+\varepsilon)^{-1/2}$

Änderung durch Deformation $\Delta E_{s} = E_{s}(\varepsilon) - E_{s}(0) = \frac{2}{5}\varepsilon^{2}a_{s}A^{2/3}$ $\Delta E_{c} = E_{c}(\varepsilon) - E_{c}(0) = -\frac{1}{5}\varepsilon^{2}a_{c}Z^{2}A^{-1/3}$

Energie des Ellipsoiden als Funktion der Deformation

$$E_D = \Delta E_S + \Delta E_C = \varepsilon^2 \left[\frac{2}{5} a_S A^{2/3} - \frac{1}{5} a_C Z^2 A^{-1/3} \right]$$

Spaltparameter

$$x \equiv \frac{Z^2 / A}{51} \approx 1$$

Kein Minimum

$$E_D < 0$$
 für $x \approx 1$

Deformation

Schalenkorrektur

Schalenkorrektur trägt der lokalen Zustandsdichte der Einteilchenzustände Rechnung

Schalenkorrektur: $\delta E = E - \tilde{E}$

Totale Energie:

$$E_{Strutinski} = E_{LDM} + \delta E$$

An einem Schalenabschluss werden die Schalenkorrekturen negativ.

Dies bedeutet eine höhere Bindungsenergie, was der experimentellen Situation entspricht!

Minimale Energie als Funktion der Deformation

Die Schalenkorrekturen sind nicht auf das sphärische Schalenmodell beschränkt, sondern können genauso für das Nilsson-Modell eingesetzt werden.

Strutinski Schalenkorrekturen

Strutinski, Nuclear Physics A95 1967

Erste Vorhersagen von Superdeformation: Aktiniden

Stabilisierung superschwerer Elemente durch Schalenkorrekturen

S

Spaltung

für

Halbwertszeit

Annahmen:

 "... composite nuclear systems that live less than about 10⁻¹⁴ seconds (the generally accepted upper limit for a compound nucleus lifetime) shall not be considered a new element."

B.G. Harvey et al. Science 193 (1976) 1271

2.) "Superheavy Elements" ist ein Synonym für "Elemente, die nur auf Grund ihrer (mikroskopischen) Schalenstabilisierung existieren."

Wo ist der nächste doppelt magische Kern?

Mikroskopische Selbstkonsistente Mean-Field Modelle

$$H = \sum t_i + \frac{1}{2} \sum v_{ij}$$

Jedes Teilchen spürt ein mittleres Feld U_i(A-1) (erzeugt durch die anderen A-1 Teilchen)

$$H_{mittel}(i) = t_i + U_i (A - 1)$$

Mean-Field Hamiltonian

Primitivste Beschreibung des Verfahrens

- Intelligente Wahl des mittleren Potentials U_i(A-1) z.B. Woods Saxon, H.O.+L²+LS
- Berechne Eigenfunktionen Φ_i des Hamiltonian H_{mittel}(i)
- Verwende Eigenfunktionen und effektive NN-Wechselwirkung, um das mittlere Potential U_i(A-1) zu berechnen, dass jedes Teilchen spürt. → verbesserter Mean-Field Hamiltonian
- Berechne verbesserte Eigenfunktionen
- Berechne neues mittleres Potential mit verbesserten Wellenfunktionen
- Verfahren konvergiert zu selbstkonsistentem Potential und Wellenfunktionen mit minimierter totaler Energie f
 ür den Grundzustand
- $\cdot \rightarrow$ optimale Parameter für die effektive NN-Wechselwirkung

Details in Ring und Schuck: Hartree-Fock Methode

Einteilchenenergien für verschiedene Parametersätze

Verschiedene Vorhersagen für Schalenabschluss

Protonenenergien in verschiedenen Modelle

History of the Synthesis of Heavy Elements

(P. Armbruster, »Spektrum der Wissenschaft« (german edition of the »Scientific American«), december 1996)

Überlegungen zum Experiment • Erwartete Zählrate

$$\mathbf{N} = \boldsymbol{\sigma} \mathbf{N}_{t} \mathbf{N}_{p} \boldsymbol{\varepsilon}$$

Produktionsquerschnitt Anzahl der Projektile pro Sekunde Anzahl der Targetkerne Effizienz des Detektorsystems

Rate nachgewiesener Teilchen :

• Spaltungsquerschnitt $\sigma = 100 \text{ mbarn}$

 $σ = 1 \text{ pbarn} (10^{-35} \text{ cm}^2)$ $N_p = 5 \cdot 10^{12} \text{ s}^{-1}$ $N_t = 10^{18} \text{ cm}^{-2}$ ε = 50 %

 $N = 2.5 \cdot 10^{-6} \text{ s}^{-1}$ (1 Atom pro 5 Tage)

(> 10¹¹ mal größer)

• Gestreute Projektile oder Transferprodukte könne die gleiche Kinematik haben

Wir brauchen eine gute Separation der Reaktionsprodukte
 • up to Z=104 : normale chemiche Separation möglich

• $Z \ge 106$: Separation im Flug

• Wir brauchen auch eine eindeutige Identifikationsmethode

Heiße Fusion

- leichtes Projektil auf Aktinidentarget
- hohe Anregungsenergie des Restkerns
- Abdampfung mehrerer Neutronen

Wahrscheinlichkeit für das "Überleben" des Restkerns:

bei der Abdampfung jedes Neutrons gibt es auch immer die Möglichkeit der Spaltung

$$P_N = \frac{\Gamma_N}{\Gamma_N + \Gamma_F}$$

$$P_{XN} = \prod_{i=1\dots x} P_N^{(i)}$$

Produktion von Elementen Z=104 bis Z=108

"Kalte" Fusion

- mittelschweres Projektil auf doppelt magisches Target ²⁰⁸Pb
- geringe Anregungsenergie des Restkerns
- Abdampfung nur eines Neutrons

Die geringe Anregungsenergie kommt durch den Schalenabschluss des Targetkerns zustande.

Kalte Fusion durch Schaleneffekte (Kalte Täler)

Geschwindigkeitsfilter

Der Geschwindigkeitsfilter SHIP der GSI Darmstadt

Gas-gefüllter Separator

 $B\rho = 0.0227 \text{ A v/v}_0 \text{ q}^{-1}$

 $\mathbf{q} = \mathbf{v}/\mathbf{v}_0 \ \mathbf{Z}^{1/3}$

ρ - effektiver Radius der Trajektorieq – mittlerer Ladungszustand

- Magnetfeldregion mit ~ 1 Torr He Gas gefüllt
- Schwerionen verlassen das Target mit Ladungsverteilung

• Streuung der Ionen mit dem Gas (Geschwindigkeit der Ionen etwa gleich groß wie die Geschwindigkeit der Elektronen)

- \Rightarrow Ladungsaustauschstreuung
- \Rightarrow schmale Ladungsverteilung um mittl.Ladungszustand
- ⇒ höhere Akzeptanz des Systems da Vakuumsystem nur wenige Ladungszustände akzeptieren kann

• magnetische Steifigkeit Bp ist in erster Näherung von der Geschwindigkeit unabhängig da auch der mittlere Ladungszustand von der Geschwindigkeit abhängt

• große Akzeptanz

ABER

- geringere Auflösung
- geringere Untergrundunterdrückung

Dubna Gas-gefüllter Separator

Das SHIP Experiment an der GSI Darmstadt

Maximal: 0.3 particle mA = $2 \cdot 10^{12}$ particles/s

Flugzeitzähler und Antikoinzidenz

- Flugzeit ermöglicht grobe Massenmessung
- Anitkoinzidenz:

Bei Alphazerfall im Implantationszähler darf kein MCP Singal vorliegen

Microchannelplate Detektoren mit E und B Feldern

E-Feld in Strahlrichtung B-Feld senkrecht zur Strahlrichtung

- Elektronen werden in der Kohlenstoffolie produziert
- Beschlöeunigung und Ablenkung durch E- und B- Feld
- Verstärung durch Cahnnelplate
- Nachweis der Elektronen in der Andoe

Implantationszähler

Si-Streifenzähler (16 5mm breite vertikale Streifen)
Vertikale Position über Ladungsteilung

(1mm Auflösung)

Sukzessive Zerfälle müssen am gleichen Ort stattfinden

α-Energien müssen mit bekannten Energien übereinstimmen

History of the Synthesis of Heavy Elements

Warum wurden 10 Jahre lang keine neuen superschweren Elemente produziert???

Versuche zur Produktion von Z=116 (1979 – 1985)

Experimente in Dubna Berkeley GSI

 $1 \text{ pb} = 10^{-36} \text{ cm}^2$

Upgrades am SHIP vom 1982 bis 1996

Vergleich für einen Wirkungsquerschnitt von 1pb

	SHIP (1982)	SHIP (1996)	Possible limits
Projectile current (pµA)	0.170	0.500	1.000
Target thickness ($\mu g \text{ cm}^{-2}$)	500	450	600
Separator transmission (%)	30	45	100
Detector efficiency (%)	72	100	100
Accelerator and experiment efficiency (%)	65	85	100
Background (during beam pulse) (counts s^{-1})	100	30	10
Time (days)	160	22	3.2

Anregungsfunktion

Um neue Experimente planen zu können, ist ein systematische Verständnis der Anregungsfunktion und Wirkungsquerschnitte notwendig!!

Ereignisse im Implantationsdetektor für Z=110 und 111

Alpha-Zerfallsketten für das Isotop 269110

Zerfallsketten für Isotop ²⁷¹110

Alpha-Zerfallsketten für Element Z=111

⁶⁴Ni + ²⁰⁹Bi → ²⁷²111 + 1n

Produktion des Elementes 112 durch ⁷⁰Zn + ²⁰⁸Pb

Konsistenz der Experimente 1996 und 2000

Element 112

Messung der Anregungsfunktion

 $^{64}Ni + ^{208}Pb \rightarrow ^{271}110 + 1n$

E _{proj} (MeV)	E* (MeV)	Measuring time (days)	Ion dose (10^{18})	Ol ev	pserved σ ents (pb)
305.3	3.94	0.4	0.09	0	<38
308.6	6.49	0.6	0.15	0	<25
311.7	8.84	2.7	0.53	2	$7.4^{+9.4}_{-4.8}$
313.0	9.85	3.5	0.78	6	15^{+9}_{-6}
315.5	11.80	4.8	0.55	1	$3.6_{-3.0}^{+6.8}$

Anregungsfunktionen

Wirkungsquerschnitte

Schalenkorrekturen: Deformierte Schale um N=160

Vorhersage eine Deformierten Schale um N=152

Vergleich mit theoretischen Vorhersagen für ²⁷¹110

Nuklidkarte der Transaktiniden 2001

Spektroskopie von ²⁵⁴No

254

⁴⁸Ca + ²⁰⁸Pb

Wirkungsquerschnitt: 5 nb

(groß wegen doppelt magischer Projektil- und Targetkerne)

Gammaspektroskopie von ²⁵⁴No an RITU

Identifikation von ²⁵⁴No über Alpha-Zerfallsketten

Implantation

Alphazerfall

Zerfallskurve

Rotationsspektren in ²⁵⁴No

Am Target emittierte Gammas

In Koinzidenz mit nachgewiesenen Rückstoßkernen

In Koinzidenz mit Alphazerfallslinien der ²⁵⁴No Zerfallskette

Konversionselektronenspektroskopie

SACRED plus RITU – Collinear Conversion Electron Spectroscopy

Deformation von ²⁵⁴No bestätigt

Überraschend hohe Drehimpulse!!

Widerspruch zur bisherigen Annahme, dass die Schaleneffekte mit dem Drehimpuls exponentiell abnehmen. Wie geht es weiter ?

Nuklidkarte der Transactiniden

116

116

²⁹²116 ≈ 33 ms

Vorhersagen für Wirkungsquerschnitte

Die theoretische Vorhersage von Wirkungsquerschnitten in der Größe von pb ist sehr schwierig!

Spaltung mehrere Größenordnungen stärker!

Sehr genaues Verständnis des Fusionsprozessen notwendig!

Durchaus fragwürdige Vorhersagen

Schön, wenn es war wäre!!!

ABER: Modell ist sehr vereinfachend!!!

Produktion von SHE in symmetrischen Reaktionen

Phys. 46, 303 (2002)

Strahlintensitäten mit MAFF

Welche Kerne erreicht MAFF?

Gasstopper und Buncher

Das Gesamtkonzept für SHIPTRAP

Experimente

Massenmessungen

Einordnung ins Periodensystem – Chemie der SHE

Situation vor hundert Jahren

Chemie mit einzlnen Atomen

Gas-chromotographie

Prinzip des Experimentes

Chemie am Element Z=108

Detektorsystem von PIN Dioden

DAS PERIODENSYSTEM DER ELEMENTE

Das Berkeley Experiment zu Z=118

Observation of Superheavy Nuclei Produced in the Reaction of ⁸⁶Kr with ²⁰⁸Pb

V. Ninov,¹ K. E. Gregorich,¹ W. Loveland,² A. Ghiorso,¹ D. C. Hoffman,^{1,3} D. M. Lee,¹ H. Nitsche,^{1,3} W. J. Swiatecki,¹ U. W. Kirbach,¹ C. A. Laue,¹ J. L. Adams,^{1,3} J. B. Patin,^{1,3} D. A. Shaughnessy,^{1,3} D. A. Strellis,¹ and P. A. Wilk^{1,3}
 ¹Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
 ²Department of Chemistry, Oregon State University, Corvallis, Oregon 97331
 ³Department of Chemistry, University of California, Berkeley, California 94720

(Received 27 May 1999)

Editorial Note: Observation of Superheavy Nuclei Produced in the Reaction of ⁸⁶Kr with ²⁰⁸Pb [Phys. Rev. Lett. 83, 1104 (1999)]

V. Ninov, K. E. Gregorich, W. Loveland, A. Ghiorso, D. C. Hoffman, D. M. Lee, H. Nitsche, W. J. Swiatecki, U. W. Kirbach, C. A. Laue, J. L. Adams, J. B. Patin, D. A. Shaughnessy, D. A. Strellis, and P. A. Wilk (Received 26 July 2001; published 1 July 2002)

DOI: 10.1103/PhysRevLett.89.039901

PACS numbers: 25.70.Jj, 27.90.+b, 99.10.+g

All but one of the authors of the original Letter have asked us to publish the following retraction:

In our Letter, we reported the synthesis of element 118 in the 208 Pb(86 Kr, *n*) reaction based upon the observation of three decay chains, each consisting of an implanted heavy atom and six sequential high-energy alpha decays, correlated in time and position. Prompted by the absence of similar decay chains in subsequent experiments [1–4], we (along with independent experts) reanalyzed the primary data files from our 1999 experiments. Based on these reanalyses, we conclude that the three reported chains are not in the 1999 data.

We retract our published claim for the synthesis of element 118.

- [1] S. Hofmann and G. Münzenberg, Rev. Mod. Phys. 72, 733 (2000).
- K. Morimoto et al., in Tours Symposium on Nuclear Physics IV, Tours, 2000, AIP Conf. Proc. No. 561 (AIP, New York, 2001), p. 354.
- [3] C. Stodel et al., in Ref. [2], p. 344.
- [4] K.E. Gregorich et al. (to be published).

New results on elements 111 and 112

S. Hofmann^{1,a}, F.P. Heßberger¹, D. Ackermann¹, G. Münzenberg¹, S. Antalic², P. Cagarda², B. Kindler¹, J. Kojouharova¹, M. Leino³, B. Lommel¹, R. Mann¹, A.G. Popeko⁴, S. Reshitko¹, S. Saro², J. Uusitalo³, and A.V. Yeremin⁴

¹ Gesellschaft f
ür Schwerionenforschung (GSI), D-64220 Darmstadt, Germany

² Department of Nuclear Physics, Comenius University, SK-84248 Bratislava, Slovakia

³ Department of Physics, University of Jyväskylä, FIN-40351 Jyväskylä, Finland

⁴ Flerov Laboratory of Nuclear Reactions, JINR, RU-141 980 Dubna, Russia

In order to prove consistency of the results from the earlier analysis and the presently used one, we also reanalyzed all our data measured since 1994. In the course of that work we reviewed a total of 34 decay chains, four of $^{269}110$, eight of $^{270}110$, thirteen of $^{271}110$, six of $^{272}111$ and three of $^{277}112$. In two cases (the second chain of $^{269}110$ measured in 1994 and the first chain of $^{277}112$ measured in 1996) we found inconsistency between the original raw data, stored in binary files on magnetic tape (which were used for re-analysis), and the event-by-event text files (which were used at the time as the basis for the assignment). For reasons not yet known to us the contents of these text files had been modified for the case of the two events so that event chains were spuriously created.

We performed a re-analysis of our data measured since 1994 in order to confirm the previously obtained results and to prove consistency with the presently used computer programs. In the course of this work we reviewed 34 decay chains, four of $^{269}110$, eight of $^{270}110$, thirteen of $^{271}110$, six of $^{272}111$ and three of $^{277}112$. In two cases (second chain of $^{269}110$ measured in 1994 and first chain of $^{277}112$ measured in 1996) we found inconsistency of the data, which led to the conclusion, that for reasons not yet known to us, part of the data used for establishing these two chains were spuriously created. In all other cases the previously obtained data are exactly reproduced.