Basic Concepts

» Particle physics studies the elementary “building blocks” of matter and
Interaction between them.

» Matter consists of particles and fields.

» Particles interact via forces caused by fields.

> Forces are being carried by special particles, called gauge bosons.

electron
<10"%cm

proton
(neutron)

quark
g <10 Scm

: nucleus
. ~10""%cm
atom~10"cm ~10"3cm

Forces of nature:
1) gravitational

2) weak n-op+te +1,
3) electromagnetic e*+e >y +y
4) strong m~(du) + p(uud) - K*(us) + 2~ (dds)
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Forces of Nature

Acts on: Carrier Range Strength Stable Induced reaction
systems
Gravity all particles graviton long ~10739 Solar system Object falling
F «x1/r?
Weak force fermions bosons |< 1071m 107> None B-decay
W and Z

Electromagnetism | particles with | photon long 1/137 Atoms, Chemical
electric charge Fox1/r? stones reactions
Strong force quarks and gluon 107 m 1 Hadrons, Nuclear
gluons nuclei reactions

*  Two people are standing in boats. One person e ltturns out that all interactions which affect matter
moves their arm and is pushed backwards; a particles are due to an exchange of force carrier
moment later the other person grabs at an invisible particles, a different type of particle altogether. These
object and is driven backwards. Even though you particles are like basketballs tossed between matter
cannot see a basketball, you can assume that one particles (which are like the basketball players). What
person threw a basketball to the other person we normally think of as "forces" are actually the effects
because you see its effect on the people. of force carrier particles on matter particles.
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The Standard Model

> Electromagnetic and weak forces can be described by a single theory = the
“Electroweak Theory” was developed in 1960s (Glashow, Weinberg, Salam).

» Theory of strong interactions appeared in 1970s:
“Quantum Chromodynamics” (QCD)

» The “Standard Model” (SM) combines both.

Abdus Salam, Steven Weinberg, Sheldon L. Glashow

Main postulates of SM:
1) Basic constituents of matter are quarks and leptons (spin 1/2).
2) They interact by means of gauge bosons (spin 1).

3) Quarks and leptons are subdivided into 3 generations.
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The Standard Model

Fermions Bosons
Leptons and .1 . Force Carrier
Quarks SpIn =3 PSS Particles
Baryons (qqq) Spin = %%g -+ Spin=0,1,2,- Meson (qq)

Baryons (qqq) and Mesons (qq) are Hadrons

1 1 1 — 1
Baryon#=(qqq) = +5+;=1 and (qq)=§+(——)=0

Lepton | lepton# | electron# | muon #
e” 1 1 0
Ve 1 1 0
H 1 0 1 Lepton numbers are conserved in any reaction
Vy 1 0 1 (for anti-leptons L = -1)
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Consequence of Lepton-Number Conservation

reaction lepton # | electron# | muon #
Vetn-op+e | 1—>1 -1 0—0
Vetn-op+e | -1—>1]| -1 =1 0—0
u —e +vy 1 —1 0—1 1—-0
ﬁ+p—>u++n -1--1| 0-0 |[-1--1
wtp—-et+n|-1--1| 0—>-1 | -1-0
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Fermions: The Elementary Players

Ist generation 2nd generation  3rd generation  charge [e]
r
G- G- G~ -
Quarks <
R
Q- 0 - 0
Leptons <
0 Q- @~
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Quantum Numbers and Flavours

K*=us5, K°=d5
“Strangeness” S = —[N(s) — N(3)] K~ = us, K° =ds
¥t =uus, X = uds,X” = dds

Dt = cd, D% = cu

“Charm” C =[N(c) = N(O)] D-=¢d  D°=¢cu

BT = ub, B° = db

“Bottomness” B = —|N(b) — N(b)| B-=ub, B°=db

e ” _ _ No composite hadrons are formed
Topness I [N(t) N(E)] that contain the top (anti) quark

“ Majority of hadrons are unstable and tend to decay by the strong interaction to the
state with the lowest possible mass (7~10723 s)

“+ Hadrons with the lowest possible mass for each quark number (C, S, etc.) may live
much longer before decaying weakly (~10~7 — 1013 s) or electromagnetically
(mesons, T~10716 — 10741 )
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Quantum Numbers and Flavours

Some examples of baryons:

particle | mass quark charge S C | B
(GeV/c?) | composition | (units of )

p 0.938 uud 1 0 0

n 0.940 udd 0 0 0

A 1.116 uds 0 -1 0 0

A, 2.285 udc 1 0 1 0

Some examples of mesons:

particle | mass quark charge | S | C | B
(GeV/c?) | composition | (units of )

mt 0.140 ud 1 0 0 0
K~ 0.494 su -1 -1 0 0
D~ 1.869 dc -1 0 -1 0
D} 1.969 cS 1 1 1 0
B~ 5.279 bu -1 0 0 -1
Y 9.460 bb 0 0 0 0
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Table of Baryons and Mesons

Table of Baryons Mesons
R Particle ([Symbol ;;\ar.]tjtll;;lc Makeup R:‘:Vm;zgs S IC IB |Lifetime||Decay Modes
] est mass|| . Lifetime
Particle || Symbolf|Makeup MeV/c? Spin|(B IS Rgeanis Decay Modes I b | o | o " wsa lilals jlg{i ™ |
Proton uud 938.3 172 |+1)10 )| Stable ‘ - 3
15 | pion || 70 | ser [%¥ —dd | 1350 flofolo :1'3.3.,; 2 ‘
Neutron| 1N ddu 939.6 | 1/2 +1ff0 920 peve ‘ V2
16 I Kaon K" K us 4937 |+1]{ 0 ffo xllf}dq W, a'a’
Lambdal A uds 11156 | 1/2 [[+1]f-1 e pr, 1 —
x10 ’ Kaon || K°% || K% 1* 4977 |[+1f 0 Jfo xl'o...n xw2n’
; 0.8
| Sigma || = uus 1189.4 || 1/2 |+1[-1 e pr, o ‘ ’ Kaon | KO | KO, 1* 4977 |+1]fo o x":'gs ey
[signa [ 30 [ was o025 [un ] emo® [ ary ] | &o | o [[sar] o ] sws JoofoJcwoe] znm
15 [Tld])nm:. '[]L" Self I 958 000 awn
Sigma || = dds | 11973 12 fefal nw ‘ we | o | p ” o Joofo] oL T e
| Delta AH uuu 1232 32 110 X?(.fﬂ Pﬂ+ ‘ ’ Rho po Self uw, dd 770 000 ‘{(1)0‘1&5 st
0.6 l Omega m{] Self u, dd 782 ofofo xi)(..ﬁgg A
Delta | AT uud 1232 (32 [+10fl o pa’
= l Phi @ | ser 5 1020 [olflofo xﬁf_ﬂ KK KK
0.6 -
| Delta Al udd 1232 32 |+ 0 <103 nm’ ‘ ’ D D' D ed 1869.4 | 0 |fr1]fo ;1%_?3 K+ el_|
42
| Delta A ddd 1232 | 3/2 [[+1f| 0 X?(’); N ‘ I D D’ | p° cu 1864.6 fl 0 freafio | o s |l (Kol + |
_ T I D p', | D, os 1969 [+1f+1flo xfo?” K+ |
B oo Il ows | 1315 [zl 27, A% =
Cascade x10 ‘ Ipsi | Jhy | serf e 30969 floflofofl oo ele, 1. |
i 1.64
Cafa ol & dss 1321 fu2 efia) A% ‘ I s | BB w | s fofofa] C.f b |
15
0.82 ’ B B® B® db 5279 [fofof-1 D’ + |
omegal| o || sss || 1672 [ 32 [+1f-3 o || 27, A% = xlo®
x10 [(B [ B ] B° sb 5370 [l .. Bet_ |
|Lambda At ude 2281 {12 |10 2x10"° Upsiton | Y || self bb 04604 [ olfofo xlli)37" e'e-,,ﬂp:..|
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Consequence of Quark-Number Conservation

reaction

Quark configuration

charge | baryon# | strangeness #
p+p->n’+n (wud) + (uud) - (uu — dd) + (udd) yes no yes
T~ +p->K°(ds) +n (ud) + (uud) - (d3) + (udd) yes yes no
p+p-ont+n+n | (uud)+ (uud) - (ud) + (udd) + (udd) no yes yes

decay

Quark configuration

Q" > A+ K-

(sss) = (uds) + (us) s-ou+W-

and W™ - u+d

Kt >t +n°

ws) > (ud)+ (un—dd) | s>a+W* and Wrsu+d

Et > A0+ 7™

(dss) - (uds) + (ud) s-ou+W-

and W™ - u+d

2/3

-1/3

Indian Institute of Technology Ropar

Hans-Jirgen Wollersheim - 2018



The Standard Model Chart

Three Generations of Matter (Fermions)

Force Carriers
(Gauge Bosons)

e =, = = Y
mass = =2.3 MeV/c? =1.275 GeV/c? =173.07 GeV/c? 0
charge - 2/3 ™ s 273 y 0 o
spin -] 12 w i o ; Strong Interactions
up charm 1 top gluon
_ r A - y
B Mevie | =5 Me\nc* =4.18 GeVic* 0 )
i ./I ) ’/—\\ ) -
3’; " ’ Electromagnetism
= 112 1/2 1
= down ~ strange bottom photon
fE;.Sﬁ MeVic? ) .105_? MeVic? b 1 T77 GeVic? .‘.;1_2 GeVic? 3
-1 /é\\ A K—K\ -1 ﬂ\ 0
112 / 112 u 112 'D 1 ‘ W
=
electron muon tau Z boson (@) )
. - UY Weak Interactions
7)) ..“2.2 eVic? \ .¢D.1? MeWv/c* ) <15.5 MeV/c? B0.4 GeVic? o
— i o - (s
= o : 0 & 0 Y +1
o) D o
= i 102 12 1 g
o
electron muon tau
“ | neutrino | neutrino | neutrino Wboson 5
o2

% Standard Model does not explain neither appearance of the mass nor the reason
for existence of 3 generations.
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Particles and Interactions

Force Particles | Quarks | Charged Leptons | Neutrinos
Strong no no

Electromagnetic yes no
Weak yes yes

Quarks (hence hadrons) have all types of interactions!
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History of the Universe

Historv of the Universe

era of gravitation

era of particle physics

55
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Units and Dimensions

» The energy is measured in electron-\olts:
1eV =1.602-10717])

1keV =10%eV; 1 MeV =10%eV; 1GeV =10°eV; 1 TeV = 1012 eV

» The Planck constant (reduced) is:
h=h/2m =6.582-107%2 MeV s
and the “conversion constant” is:

hc = 197.327 -10715 MeV m

AE - At = h = energy * time
. hc = energy * time * velocity
= energy * distance

> Charges measured in terms of electronic charges e = 1.6 - 1071°C

> Cross sections measured in terms of barns. 1 barn = 10728 m?

€2 Indian Institute of Technology Ropar Hans-Jiirgen Wollersheim - 2018 === 1L




Units and Dimensions

Because E? = p?c? + m?c* where E is the energy, p the momentum, m the rest mass:
pc and mc? have dimensions of energy and it is convenient to measure momentum in
units of GeV/c and mass in units of GeV/c2.

[E(GeV)]? = [p(GeV /c)]?c? + [m(GeV /c?)]*c*

1eV/c?=178-10"3%kg

Because ¢ cancels out we often omit the c i.e. put c=1 (and A = 1),
so momenta and masses are also measured in GeV.
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Units and Dimensions

This implies, however, that the results of calculations must be translated back to
measureable quantities in the end. Conversion factors are the following:

quantity conversion factor natural unit | normal unit
mass 1kg = 5.61-10%° GeV GeV GeV /c?
length 1m = 5.07 - 101°GeV 1 Gevl hc/GeV
time 1s = 1.52-10%*GeV 1 GeV1 h/GeV
unit charge e = Vana 1 Vhe
Excercise-1:

Derive the conversion factors for mass, length and time in the table above.
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| orentz Transformation

Co-moving coordinate systems S 1 “S’
V
/ <
(= () (= (%)
r . _ / /
S5t T (@ = vb) g5t /y/(xjrvt)
L2 = =z Lz = 7
_ 1
e e
Lorentz contraction: L=Ly/y
Time dilatation: t=tyy
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Time Dilatation

non-relativistic

Earth-frame observer

QOut of a million
particles at 10 km, | peasure muon
how many will flux at 10 km height. Distance: Ly = 10* meters
reach the Earth? T 000.000 T T 10* m
1 1 Ime. = (2108
& (0.98)-(3:108 m/s)
T =34-10"°%s = 21.8 halflives = 4.36 halflives
LL : mass 207 m:,_:'_"‘(I v=.98c _
charge or - y=5 Survival rate:
Rest halflife: i — 2—21.8 =027 - 10—6 i — 2—4.36 = 0.049
To=1.56 X 10 sec Iy Iy
Or only about 0.3 Or only about 49000
out of a million out of a million

The muon’s clock is time-
dilated, or running slow
by afactor T =y - T, so
its measured half-life is
5-1.56 us = 7.8 us.
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Lorentz Contraction

non-relativistic Muon-frame observer
Out of a million
particles at 10 km, | peasure muon _ .
how many will flux at 10 km height. Distance: L, = 10" meters
reach the Earth? ———— ) 104 m 2000 m
I . —_ _
0 1 10005000 TI Me. T = (0.98)'(3'108 m/s) ~(0.98) - (3-108 m/s)
f“‘“f“y
T =34-10"%s = 21.8 halflives  =6.8-10°s
I: mm\?_n?;/— . = 4.36 halflives
charge +0f - y=5 SurIV|vaI rate: 1
Rest halflife: . ;’telativity _ 2—21.8 =027 - 10—6 _ 2—4.36 = 0.049
Ty=1.56x10 " sec actor lo lo
S it Or only about 0.3 Or only about 49000
out of a million out of a million

The muon sees distance

as length-contracted , so
that L = Ly/y = 0.2 L,
=2 km.

Indian Institute of Technology Ropar Hans-Jurgen Wollersheim - 2018 ESI



Relativistic Kinematics

The relativistic relationship between the total energy E, momentum p and rest mass m is

E? = p%c? + m2c* —
Non relativistic (p K m):
or E = (p2c2+m2c4)1/2
N 2.2 /02 4Y1/2
2 _ 2.2 2.2 4 2.2 2 4 =mc*- (1+p“c?/m=c®)
E® = pxc® + pyc® + zpc® + m-c = mc? - (1 + p2/2m2c? + )
=mc?+p?/2m (p=mv)

1
= mc? + Emv2

The particle velocity v = fc or 8 = v/c and the Lorentz factor

1 1
y: =
J1—v2/c? 1 - p?

Sothaty?(1—pB%)=1lory? =y%B%+1 - multiplied by m?c¢*
y2m264 _ y2ﬁ2m264 + m2ct
Compare with 'XA ‘Z‘

E? = p2%c? + m2c*

E=ymc?andp = yBmcory = E/mc?and B = p/ymc = pc/E
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- )
/(Eppl)
. E..p
Particle —>(E,.P,)

—

at rest ’(E;;,Bs) > Decay
- \ . prOdUCtS
(M’p = O) . (E4,ps)

E..p
(NpN))

% > yy decay:  (two massless particles)

M? = [(p1,0,0,p1) + (P2, 0, pp5inb, pc0s0)]* = (p1 + p2)? — p7sin®6 — (p; + p,cos6)?

= 2p,p,(1 — cosB) (E.pop )
) p ol yl Z

= . . [ ]
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Example: Data from wo rm hoton pectrometer TAPS

vy invariant mass

=
> :
§ Jrl signal TAPS data
% /IL p—r He
[}
-:"; :r "H 45{} GE“U";”C
300k I +10
250/ | 7
' ‘ combinatorial™.
so0f |
background
150f- | :
- |_)
mor 1 20 \ 10
50} V—,/ :_H
F‘s..-" e ] \\ﬁ-ﬁ——‘—

100 EUD BL'II‘_'I 4CID ECHD ﬁ'ﬂﬂ T’DD BUG

invariant mass m,__ [MeV/c®

]

n° - yy

Compute invariant mass m,,,
for all possible photon pairs

my, = \/ZEylEyz(l — COSHW)

TAPS blocks
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Observables

< Scattering mmp  Cross section (o)

s Decays # Decay rate (I')

Both ¢ and I" are related to the probability for the considered process to occur
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Cross Section

Consider a beam of projectiles of intensity ®, particles/sec which hits a thin foil of A -4
target nuclei with the result that the beam is attenuated by reactions in the foil such v, | | /
that the transmitted intensity is @ particles/sec. - - w
The fraction of the incident particles disappear from the beam, i.e. react, in passing . w/
through the foil is given by ' | .ﬁ_f_;_f_,_,_,_
dd=—-d-ny-o-dx g |
> L«_‘Q_‘
The number of reactions that are occurring is the difference between the initial and . } i
transmitted flux . l ./ T
Dinitiat — Perans = cI)initial(l - exp[_nb “d - 0]) - .7‘1\1\\
~ ®Dipitiar " Np -0 (for thin target) o —"\ I
Example: D, =ny-V, Np = n,-A-d

A particle current of 1 pnA consists of 6-10° projectiles/s.
A 1323n target (1 mg/cm?) consists of 5-10'8 nuclei/cm?

6-10%3-1073 g/cm?
1329

451018 [target nuclei

cm?

Luminosity = projectiles [s] - target nuclei [cm™]

Luminosity (projectile — 32Sn) = 3-1028 [slcm™2]

Reaction rate [s1] = luminosity - cross section [cm?]
= projectiles [s1] - target nuclei [cm?] - cross section [cm?]
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Decay Time and Lifetime

N®
NO

L e
P(t)dt =—e "' dt
12 K\t,, =0.693 ¢ (4

1/e d
u t

T = proper time (measured in the particle rest frame)

In laboratory frame: Agecqy = ¥BC 7T
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Decay Width

S| s

FWHM Uncertainty principle mmp T

Cross section o

If a particle has a finite lifetime , it decays with probability e t/7 and a decay width T
can be defined. One can interpret I' - T = h as a relationship between uncertainty in
energy (mass) and lifetime i.e. AE - At = h.

Strongly decaying particles have very short lifetimes and hence large width. The
p(770) hasT = 151 MeV and 7 = 4.4 - 10~ %% s.

Weakly decaying particles have longer lifetimes and hence much smaller widths. The
K%mesonhasT = 7.3-10"* MeV andt = 0910719 s.
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