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γ-ray spectroscopy

 γ-decay is an electromagnetic process where the nucleus decreases in excitation 
energy, but does not change proton or neutron numbers

 This decay process only involves the emission of photons (γ-rays carry spin 1)

 Basic γ-ray properties, observables
 γ-ray interactions in matter
 Detector types
 Measurement techniques
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Electromagnetic spectrum
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γ-decay

 Gamma-ray emission is usually the dominant decay mode

137Cs detected in red: NaI scintillator
blue: HPGe (high purity Ge semiconductor)

Measurements of γ-rays let us deduce: 
Energy, Spin (angular distr. / correl.), Parity (polarization), magnetic moment, 
lifetime (recoil distance, Doppler shift), …

of the involved nuclear levels.

𝑍𝑍
𝐴𝐴𝑋𝑋𝑁𝑁∗ → 𝑍𝑍

𝐴𝐴𝑋𝑋𝑁𝑁
∗
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γ-decay in a Nutshell

 The photon emission of the nucleus essentially results from a re-ordering of 
nucleons within the shells.

 This re-ordering often follows α or β decay, and moves the system into a more 
energetically favorable state.
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γ-decay

γ-ray spectrum of natU
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γ-decay

Most β-decay transitions are followed by γ-decay.
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Classical Electrodynamics

 The nucleus is a collection of moving charges, which can induce 
magnetic/electric fields

 The power radiated into a small area element is proportional to 𝑠𝑠𝑠𝑠𝑠𝑠2 𝜃𝜃

 The average power radiated for an electric dipole is:

𝑃𝑃 =
1

12𝜋𝜋𝜖𝜖0
𝜔𝜔4

𝑐𝑐3
𝑑𝑑2

 For a magnetic dipole is

𝑃𝑃 =
1

12𝜋𝜋𝜖𝜖0
𝜔𝜔4

𝑐𝑐5
𝜇𝜇2
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Electric/Magnetic Dipoles

Electric and magnetic dipole fields have opposite parity:
Magnetic dipoles have even parity and electric dipole fields have odd parity.

⇒ 𝜋𝜋 𝑀𝑀𝑀 = −1 𝑀+1 𝑎𝑎𝑠𝑠𝑑𝑑 𝜋𝜋 𝐸𝐸𝑀 = −1 𝑀
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Higher Order Multipoles

It is possible to describe the angular distribution of the radiation field as a function 
of the multipole order using Legendre polynomials.

 𝑀:     The index of radiation
2𝑀:   The multipole order of the radiation

 𝑀 = 1 → 𝐷𝐷𝑠𝑠𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑀 = 2 → 𝑄𝑄𝑄𝑄𝑎𝑎𝑑𝑑𝑄𝑄𝑄𝑄𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑀 = 3 → 𝑂𝑂𝑐𝑐𝑂𝑂𝑄𝑄𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

 The associated Legendre polynomials 𝑃𝑃2𝑀 𝑐𝑐𝐷𝐷𝑠𝑠 𝜃𝜃 are:
For 𝑀 = 1: 𝑃𝑃2 = 1

2
3 � 𝑐𝑐𝐷𝐷𝑠𝑠2 𝜃𝜃 − 1

For 𝑀 = 2: 𝑃𝑃4= 1
8

35𝑐𝑐𝐷𝐷𝑠𝑠4 𝜃𝜃 − 30𝑐𝑐𝐷𝐷𝑠𝑠2 𝜃𝜃 + 3
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Angular Momentum in γ-Decay

 The photon is a spin-1 boson

 Like α-decay and β-decay the emitted γ-ray can carry away units of angular 
momentum ℓ, which has given us different multipolarities for transitions.

 For orbital angular momentum, we can have values 𝑀 = 0,1,2,3,⋯ that 
correspond to our multipolarity.

 Therefore, our selection rule is:

𝐽𝐽𝑖𝑖 − 𝐽𝐽𝑓𝑓 ≤ 𝑀 ≤ 𝐽𝐽𝑖𝑖 + 𝐽𝐽𝑓𝑓
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Characteristics of multipolarity

L multipolarity π(Eℓ) / π(Mℓ) angular distribution

1 dipole -1 / +1

2 quadrupole +1 / -1

3 octupole -1 / +1

4 hexadecapole +1 / -1

⁞

ℓ = 1 ℓ =2

𝐸𝐸𝛾𝛾 = 𝐸𝐸𝑖𝑖 − 𝐸𝐸𝑓𝑓

𝐼𝐼𝑖𝑖 − 𝐼𝐼𝑓𝑓 ≤ 𝑀 ≤ 𝐼𝐼𝑖𝑖 + 𝐼𝐼𝑓𝑓

∆𝜋𝜋 𝐸𝐸𝑀 = −1 𝑀

∆𝜋𝜋 𝑀𝑀𝑀 = −1 𝑀+1
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The basics of the situation

ℓ

2

0

2 − 0 ≤ 𝑀 ≤ 2 + 0

Here Δ𝐽𝐽 = 2 and 𝑀 = 2
this is a stretched transition
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The basics of the situation

ℓ

3

2

3 − 2 ≤ 𝑀 ≤ 3 + 2

Here Δ𝐽𝐽 = 1 but 𝑀 = 1,2,3,4,5
and the transition can be a mix of 5 multipolarities
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The basics of the situation

𝐸𝐸𝛾𝛾, 𝑀,Δ𝜋𝜋

Electromagnetic transitions:

Δ𝜋𝜋 𝐷𝐷𝐷𝐷𝐷𝐷𝑐𝑐𝑂𝑂𝑄𝑄𝑠𝑠𝑐𝑐 = −1 𝑀

Δ𝜋𝜋 𝑚𝑚𝑎𝑎𝑚𝑚𝑠𝑠𝐷𝐷𝑂𝑂𝑠𝑠𝑐𝑐 = −1 𝑀+1

𝛥𝛥𝜋𝜋 yes E1 M2 E3 M4
no M1 E2 M3 E4
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The basics of the situation

ℓ

2+

0+

2 − 0 ≤ 𝑀 ≤ 2 + 0

𝑀 = 2 and no change in parity

𝛥𝛥𝜋𝜋 yes E1 M2 E3 M4
no M1 E2 M3 E4
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The basics of the situation

ℓ

3+

2-

3 − 2 ≤ 𝑀 ≤ 3 + 2

Here Δ𝐽𝐽 = 1 but 𝑀 = 1,2,3,4,5

𝛥𝛥𝜋𝜋 yes E1 M2 E3 M4
no M1 E2 M3 E4

mixed E1,M2,E3,M4,E5



Hans-Jürgen Wollersheim - 2020

The basics of the situation

ℓ

3+

2+

3 − 2 ≤ 𝑀 ≤ 3 + 2

Here Δ𝐽𝐽 = 1 but 𝑀 = 1,2,3,4,5

mixed M1,E2,M3,E4,M5

𝛥𝛥𝜋𝜋 yes E1 M2 E3 M4
no M1 E2 M3 E4
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The basics of the situation

3+ → 2−: mixed M1,E2,M3,E4,M5

3+ → 2+: mixed E1,M2,E3,M4,E5

In general only the lowest 2 multipoles compete

and (for reasons we will see later)

𝑀 + 1 multipole generally only competes if it is electric:

3+ → 2+: mixed M1/E2

3+ → 2−: almost pure E1 (very little M2 admixture)
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Characteristics of multipolarity

L multipolarity π(Eℓ) / π(Mℓ) angular distribution

1 dipole -1 / +1

2 quadrupole +1 / -1

3 octupole -1 / +1

4 hexadecapole +1 / -1

⁞

parity: electric multipoles π(Eℓ) = (-1)ℓ, magnetic multipoles π(Mℓ) = (-1)ℓ+1

ℓ = 1 ℓ =2

The power radiated is proportional to:

where σ means either E or M and ℳ 𝜎𝜎𝑀 is the E or M multipole moment of the appropriate kind.

𝑃𝑃 𝜎𝜎𝑀 ∝
2 𝑀 + 1 � 𝑐𝑐

𝜀𝜀0 � 𝑀 � 2𝑀 + 1 ‼ 2
𝜔𝜔
𝑐𝑐

2𝑀+2
ℳ 𝜎𝜎𝑀 2
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Emission of electromagnetic radiation

where Eγ = Ei – Ef is the energy of the emitted γ quantum in MeV (Ei, Ef are the nuclear level 
energies, respectively), and the reduced transition probabilities B(Eℓ) in units of e2(barn)ℓ and
B(Mℓ) in units of 𝜇𝜇𝑁𝑁2 = ⁄𝐷𝐷ℏ 2𝑚𝑚𝑁𝑁𝑐𝑐 2 𝑓𝑓𝑚𝑚 2𝑀−2
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Single particle transition (Weisskopf estimate)

For the first few values of  λ, the Weisskopf estimates are

gamma energy Eγ [keV]
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Conversion electrons

Energetics of CE-decay (i=K, L, M,….)
Ei = Ef + Ece,i + EBE,i

γ- and CE-decays are independent; transition probability (λ ~ Intensity)
λT = λγ + λCE = λγ + λK + λL + λM……

Conversion coefficient

𝜶𝜶𝒊𝒊 =
𝝀𝝀𝑪𝑪𝑪𝑪,𝒊𝒊

𝝀𝝀𝜸𝜸
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Internal conversion

 For an electromagnetic transition internal conversion can occur instead of emission of 
gamma radiation. In this case the transition energy Q = Eγ will be transferred to an electron 
of the atomic shell.

Te = Eγ - Be
Te: kinetic energy of the electron
Be: binding energy of the electron

internal conversion is important for:
- heavy nuclei ~ Z3

- high multipolarities Eℓ or Mℓ
- small transition energies

𝛼𝛼𝑘𝑘 𝐸𝐸𝐷𝐷 ∝ 𝑍𝑍3
𝐿𝐿

𝐿𝐿 + 1
2𝑚𝑚𝑒𝑒𝑐𝑐2

𝐸𝐸

𝐿𝐿+ ⁄5 2
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Electron spectroscopy

ΔΩ
4𝜋𝜋

= 26%

𝑇𝑇𝑒𝑒∗ = 𝛾𝛾 � 𝑇𝑇𝑒𝑒 � 1 − 𝛽𝛽1 � 1 + 2𝑚𝑚𝑒𝑒 ⁄𝑐𝑐2 𝑇𝑇𝑒𝑒 � 𝑐𝑐𝐷𝐷𝑠𝑠𝜃𝜃𝑒𝑒1 + 𝑚𝑚𝑒𝑒𝑐𝑐2 � 𝛾𝛾 − 1

𝑐𝑐𝐷𝐷𝑠𝑠𝜃𝜃𝑒𝑒1 = 𝑐𝑐𝐷𝐷𝑠𝑠𝜗𝜗1𝑐𝑐𝐷𝐷𝑠𝑠𝜗𝜗𝑒𝑒 + 𝑠𝑠𝑠𝑠𝑠𝑠𝜗𝜗1𝑠𝑠𝑠𝑠𝑠𝑠𝜗𝜗𝑒𝑒𝑐𝑐𝐷𝐷𝑠𝑠 𝜑𝜑𝑒𝑒 − 𝜑𝜑1

Doppler shift correction for projectile:
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Mini Orange setup for conversion electron spectroscopy
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Comparison of α-decay, β-decay and γ-decay

𝜆𝜆 =
ℎ
𝐷𝐷

=
ℎ � 𝑐𝑐

𝐸𝐸𝑘𝑘𝑖𝑖𝑘𝑘 � 𝐸𝐸𝑘𝑘𝑖𝑖𝑘𝑘 + 2𝑚𝑚𝑐𝑐2
=

1239.84 𝑀𝑀𝐷𝐷𝑀𝑀 𝑓𝑓𝑚𝑚
𝐸𝐸𝑘𝑘𝑖𝑖𝑘𝑘 � 𝐸𝐸𝑘𝑘𝑖𝑖𝑘𝑘 + 2𝑚𝑚𝑐𝑐2de Broglie wavelength:

decay Energy [MeV] de Broglie λ [fm]

α-particle, mα = 3727 MeV/c2 5 6.42

β-particle, me = 0.511 MeV/c2 1 871.92

γ-photon 1 𝜆𝜆 = �ℎ � 𝑐𝑐
𝐸𝐸 = �1240

𝐸𝐸

For α-particles this dimension is somewhat smaller than the nucleus and this is why a semi-
classical treatment of α-decay is successful.
The typical β-particle has a large wavelength λ in comparison to the nuclear size and a 
quantum mechanical is dictated and wave analysis is called for.
For γ-decay the wavelength λ ranges from 12400 – 1240 fm (0.1 – 1 MeV). Clearly, only a 
quantum mechanical approach has a chance of success.
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γ-decay

γ-spectroscopy yields some of the most precise knowledge of nuclear structure, as spin, parity 
and ΔE are all measurable.

Transition rates between initial Ψ𝑁𝑁∗ and final Ψ𝑁𝑁´ nuclear states, resulting from electromagnetic 
decay producing a photon with energy 𝐸𝐸𝛾𝛾 can be described by Fermi´s Golden rule:

where ℳ𝑒𝑒𝑒𝑒 is the electromagnetic transition operator and ⁄𝑑𝑑𝑠𝑠𝛾𝛾 𝑑𝑑𝐸𝐸𝛾𝛾 is the density of final 
states. The photon wave function 𝜓𝜓𝛾𝛾 and ℳ𝑒𝑒𝑒𝑒 are well known, therefore measurements of λ
provide detailed knowledge of nuclear structure.

𝜆𝜆 =
2𝜋𝜋
ℏ

Ψ𝑁𝑁´ 𝜓𝜓𝛾𝛾 ℳ𝑒𝑒𝑒𝑒 Ψ𝑁𝑁∗
2 𝑑𝑑𝑠𝑠𝛾𝛾
𝑑𝑑𝐸𝐸𝛾𝛾

A γ-decay lifetime is typically 10-12 [s] and sometimes even as short as 10-19 [s]. However, this 
time span is an eternity in the life of an excited nucleon. It takes about 4·10-22 [s] for a nucleon 
to cross the nucleus.
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Interaction of gamma rays with matter

total absorption coefficient: μ/ρ [cm2/g]

Lead

i=1   photoelectric effect
i=2   Compton scattering
i=3   pair production

Aluminum
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Mass dependence of X-ray absorption

For X-ray radiation the photoelectric effect is the most important interaction.

Lead absorbs more than Beryllium!

82Pb serves as shielding for X-ray and γ-ray radiation; lead vests are used by medical staff people who 
are exposed to X-ray radiation. Co-sources are transported in thick lead container.

On the contrary:
4Be is often used as windows in X-ray tubes to allow for almost undisturbed transmission of X-ray 
radiation.

( ) 53/ ZPhoto ⋅≈ λρµ
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Mass dependence μ/ρ of X-ray absorption

wave length 
dependence for 
Pt as absorber

element number 
dependence for 
λ=0.1 nm or 
12.4 keV
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X-ray image shows the effect of different absorptions 

Bones absorb more radiation as tissues because of their higher 20Ca content
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Interaction of gamma rays with matter
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Interaction of gamma rays with matter

Photo effect:
Absorption of a photon by a bound electron 
and conversion of the γ-energy in potential 
and kinetical energy of the ejected electron.
(Nucleus preserves the momentum conservation.)

Bindungkine EhE −⋅= ν,
5.35 −⋅∝ γσ EZphoto



Hans-Jürgen Wollersheim - 2020

Interaction of gamma rays with matter

Compton scattering:
Elastic scattering of a γ-ray on a 
free electron. A fraction of the  
γ-ray energy is transferred to the 
Compton electron. The wave 
length of the scattered γ-ray is 
increased: λ‘ > λ.

𝐸𝐸2 = 𝐷𝐷𝑐𝑐 2 + 𝑚𝑚0𝑐𝑐2 2relativistic 𝐷𝐷ℎ𝐷𝐷𝑂𝑂𝐷𝐷𝑠𝑠𝑠𝑠: 𝑚𝑚0 = 𝑚𝑚𝛾𝛾 = 0

→ 𝐸𝐸𝛾𝛾 = 𝐷𝐷𝛾𝛾𝑐𝑐

Momentum balance:

𝐷𝐷𝑒𝑒 = 𝐷𝐷𝛾𝛾 − 𝐷𝐷𝑝𝛾𝛾 → 𝐷𝐷𝑒𝑒𝑐𝑐 2 = 𝐷𝐷𝛾𝛾 − 𝐷𝐷𝑝𝛾𝛾 𝑐𝑐
2

𝐷𝐷𝑒𝑒2𝑐𝑐2 = 𝐸𝐸𝛾𝛾2 + 𝐸𝐸𝛾𝛾′2 − 2𝐸𝐸𝛾𝛾𝐸𝐸𝛾𝛾′ � 𝑐𝑐𝐷𝐷𝑠𝑠𝜃𝜃

Energy balance:

𝐸𝐸𝛾𝛾 + 𝑚𝑚𝑒𝑒𝑐𝑐2 = 𝐸𝐸𝛾𝛾′ + 𝐷𝐷𝑒𝑒𝑐𝑐 2 + 𝑚𝑚𝑒𝑒𝑐𝑐2 2

𝐸𝐸𝛾𝛾′ =
𝐸𝐸𝛾𝛾

1 + ⁄𝐸𝐸𝛾𝛾 𝑚𝑚𝑒𝑒𝑐𝑐2 1 − 𝑐𝑐𝐷𝐷𝑠𝑠𝜃𝜃
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Interaction of gamma rays with matter

Compton scattering:
Elastic scattering of a γ-ray on a 
free electron. A fraction of the  
γ-ray energy is transferred to the 
Compton electron. The wave 
length of the scattered γ-ray is 
increased: λ‘ > λ.

( )θγ
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Interaction of gamma rays with matter

σCompton

Compton scattering:
Elastic scattering of a γ-ray on a 
free electron. A fraction of the  
γ-ray energy is transferred to the 
Compton electron. The wave 
length of the scattered γ-ray is 
increased: λ‘ > λ.
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Interaction of gamma rays with matter

Compton scattering:
Elastic scattering of a γ-ray on a free electron.
The angle dependence is expressed by the
Klein-Nishina-Formula:

As shown in the plot forward scattering (θ small) is 
dominant for Eγ>100 keV.

Angular distribution:

Intensity as a function of θ:

2/ cmE eγα =

MeV

r0=2.818 fm (classical electron radius)

𝛼𝛼 = ⁄𝐸𝐸𝛾𝛾 𝑚𝑚𝑒𝑒𝑐𝑐2

𝑑𝑑𝜎𝜎𝑐𝑐
𝑑𝑑Ω

=
𝑄𝑄02

2
𝐸𝐸𝛾𝛾′
𝐸𝐸𝛾𝛾

2

�
𝐸𝐸𝛾𝛾
𝐸𝐸𝛾𝛾′

+
𝐸𝐸𝛾𝛾′
𝐸𝐸𝛾𝛾

− 2𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃 � 𝑐𝑐𝐷𝐷𝑠𝑠2𝜙𝜙
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Interaction of gamma rays with matter

Pair production:
If γ-ray energy is >> 2m0c2 (electron rest 
mass 511 keV), a positron-electron pair 
can be formed in the strong Coulomb 
field of a nucleus. This pair carries the   
γ-ray energy minus 2m0c2.

Pair production for Eγ>2mec2=1.022MeV

γ-ray > 1 MeV

magnetic field
γ’s

e-

picture of a bubble chamber

𝑑𝑑𝜎𝜎𝑃𝑃𝑃𝑃
𝑑𝑑𝐸𝐸𝑘𝑘𝑖𝑖𝑘𝑘+

= 𝑍𝑍2
1

137
𝐷𝐷2

𝑚𝑚𝑒𝑒𝑐𝑐2

2 𝑃𝑃 𝑍𝑍,𝐸𝐸𝛾𝛾
𝐸𝐸𝛾𝛾 − 2𝑚𝑚𝑒𝑒𝑐𝑐2
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Interaction of gamma rays with matter

γ-rays interaction with matter via three 
main reaction mechanisms:

Photoelectric absorption

Compton scattering

Pair production
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Gamma-ray interaction cross section

All three interaction (photo effect, Compton scattering and pair production) lead to an attenuation of the γ-ray or X-ray 
radiation when passing through matter. The particular contribution depends on the γ-ray energy:

The absorption attenuates the intensity, but the energy and the frequency of the γ-ray and X-ray radiation is preserved!

Photo effect: ~Z4-5, Eγ
-3.5

Compton: ~Z, Eγ
-1

Pair: ~Z2, increases with Eγ
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Z dependence of interaction probabilities
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Detector types

Solid state semiconductor detectors: Ge
Electron-hole pairs are collected as charge
knock-on effect → an avalanche arrives at the electrode
lots of electrons → good energy resolution
cooled to liquid N2 temperature (77K) to reduce noise
Advantage: good energy resolution (~0.15% FWHM at 1.3 MeV)
Disadvantage: relative low efficiency, cryogenic operation, limited size of crystal/detector

Scintillation detectors: e.g. NaI, BGO, LaBr3(Ce)
Recoiling electrons excite atoms, which then de-excite by emitting visible light
Light is collected in photomultiplier tubes (PMT) where it generates a pulse proportional 
to the light collected
Advantage: good time resolution

detector can be made relative large e.g. NaI detector 14”Ø x 10”
no need for cryogenics

Disadvantage: poor energy resolution (~5% FWHM at 1.3 MeV
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Scintillation detectors



Hans-Jürgen Wollersheim - 2020

Detector characterization
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Gamma-ray spectrum of a radioactive decay

γ1

γ2

CE γ2

SE γ2DE γ2

511 keV

BSc

Pb X-ray

γ1+γ2

Pb-Box
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Spins and parities

Two distinct types of measurements:

Angular correlation : can be done with a non-aligned source but need 
γ-γ coincidence information.

Angular distribution: need an aligned source but can be done with 
singles data.

...note that these cannot measure parity but you can usually infer 
something about the transition
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The basics of the situation

Imagine the situation of an M1 decay 
between two states, the initial one has Jπ

value of 1+ and the final one a Jπ of 0+

The initial Jπ=1+ state has 3 degenerate 
magnetic substates which differ by the 
magnetic quantum numbers m of ±1 and 0.

The final Jπ=0+ state has a single magnetic 
substate with m=0.

When the substates of Jπ=1+ state decay, the 
γ-rays emitted have different angular 
patterns.
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The basics of the situation

For the M1 case the angular distributions W(θ) are:

So the total distribution is 𝑊𝑊𝑀𝑀1 = 1
3
𝑊𝑊𝑀𝑀1,Δ𝑒𝑒=1 + 1

3
𝑊𝑊𝑀𝑀1,Δ𝑒𝑒=0 + 1

3
𝑊𝑊𝑀𝑀1,Δ𝑒𝑒=−1

=
1

8𝜋𝜋
1 + 𝑐𝑐𝐷𝐷𝑠𝑠2𝜃𝜃 + 𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃 =

1
4𝜋𝜋

no angular dependence

𝑊𝑊𝑀𝑀1,Δ𝑒𝑒=1 𝜃𝜃 =
3

16𝜋𝜋
1 + 𝑐𝑐𝐷𝐷𝑠𝑠2𝜃𝜃

𝑊𝑊𝑀𝑀1,Δ𝑒𝑒=0 𝜃𝜃 =
3

8𝜋𝜋
𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃

𝑊𝑊𝑀𝑀1,Δ𝑒𝑒=−1 𝜃𝜃 =
3

16𝜋𝜋
1 + 𝑐𝑐𝐷𝐷𝑠𝑠2𝜃𝜃
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Angular correlation – non-oriented source

E1𝛾𝛾1

𝛾𝛾2

Let’s imagine we have two γ-rays which follow 
immediately after each other in the level scheme.

If we measure γ1 or γ2 in singles, then the 
distribution will be isotropic (same intensity at all 
angles) ... there is no preferred direction of emission

Now imagine that we measure γ1 and γ2 in 
coincidence. We say that measuring γ1 causes the 
intermediate state to be aligned. We define the z-
direction as the direction of  γ1

The angular distribution of the emission of γ2 then 
depends on the spin/parities of the states involved 
and on the multipolarity of the transition.
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A simple example:

E1𝛾𝛾1

𝛾𝛾2

1+

0+

0+ 𝐽𝐽𝜋𝜋 = 0+,𝑚𝑚 = 0

𝐽𝐽𝜋𝜋 = 0+,𝑚𝑚 = 0

𝐽𝐽𝜋𝜋 = 1+,𝑚𝑚 = 0,𝑚𝑚 = ±1

Hence, for γ2 we only see the m=±1 to m=0 part of the distribution i.e. we see 
that the intensity measured as a function of angle (relative to γ1) follows a 1 +
𝑐𝑐𝐷𝐷𝑠𝑠2𝜃𝜃 distribution.
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General formula

E1𝛾𝛾1

𝛾𝛾2

J2

J3

J1

where
θ is the relative angle between the two γ-rays
Qk accounts for the fact that we do not have point detectors
Ak depends on the details of the transition and the spins of the level

In general, the γ-ray intensity varies as:

𝑊𝑊 𝜃𝜃 = �
𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝐴𝐴𝑘𝑘 𝛾𝛾1 𝐴𝐴𝑘𝑘 𝛾𝛾2 𝑄𝑄𝑘𝑘 𝛾𝛾1 𝑄𝑄𝑘𝑘 𝛾𝛾2 𝑃𝑃𝑘𝑘 𝑐𝑐𝐷𝐷𝑠𝑠𝜃𝜃

𝑃𝑃0 = 1 𝑃𝑃2 =
1
2

3 � 𝑐𝑐𝐷𝐷𝑠𝑠2 𝜃𝜃 − 1 𝑃𝑃4 =
1
8

35𝑐𝑐𝐷𝐷𝑠𝑠4 𝜃𝜃 − 30𝑐𝑐𝐷𝐷𝑠𝑠2 𝜃𝜃 + 3

𝑊𝑊 𝜃𝜃 = 1 + 𝑎𝑎2𝑐𝑐𝐷𝐷𝑠𝑠2𝜃𝜃 + 𝑎𝑎4𝑐𝑐𝐷𝐷𝑠𝑠4𝜃𝜃

I1 (ℓ1) I2 (ℓ2) I3 a2 a4

0 (1) 1 (1) 0 1 0

1 (1) 1 (1) 0 -1/3 0

1 (2) 1 (1) 0 -1/3 0

2 (1) 1 (1) 0 1/13 0

3 (2) 1 (1) 0 -3/29 0

0 (2) 2 (2) 0 -3 4

1 (1) 2 (2) 0 -1/3 0

2 (1) 2 (2) 0 3/7 0

2 (2) 2 (2) 0 -15/13 16/13

3 (2) 2 (2) 0 -3/29 0

4 (2) 2 (2) 0 1/8 1/24 R.D. Evans, The Atomic Nucleus
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General formula

E1𝛾𝛾1

𝛾𝛾2

J2

J3

J1

where
θ is the relative angle between the two γ-rays
Qk accounts for the fact that we do not have point detectors
Ak depends on the details of the transition and the spins of the level

In general, the γ-ray intensity varies as:

𝑊𝑊 𝜃𝜃 = �
𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝐴𝐴𝑘𝑘 𝛾𝛾1 𝐴𝐴𝑘𝑘 𝛾𝛾2 𝑄𝑄𝑘𝑘 𝛾𝛾1 𝑄𝑄𝑘𝑘 𝛾𝛾2 𝑃𝑃𝑘𝑘 𝑐𝑐𝐷𝐷𝑠𝑠𝜃𝜃

𝑃𝑃0 = 1 𝑃𝑃2 =
1
2

3 � 𝑐𝑐𝐷𝐷𝑠𝑠2 𝜃𝜃 − 1 𝑃𝑃4 =
1
8

35𝑐𝑐𝐷𝐷𝑠𝑠4 𝜃𝜃 − 30𝑐𝑐𝐷𝐷𝑠𝑠2 𝜃𝜃 + 3

𝐴𝐴𝑘𝑘 𝛾𝛾1 =
𝐹𝐹𝑘𝑘 𝐽𝐽2𝐽𝐽1𝑀, 𝑀 − 2 � 𝛿𝛿 � 𝐹𝐹𝑘𝑘 𝐽𝐽2𝐽𝐽1𝑀, 𝑀 + 1 + 𝛿𝛿2 � 𝐹𝐹𝑘𝑘 𝐽𝐽2𝐽𝐽1𝑀 + 1, 𝑀 + 1

1 + 𝛿𝛿2

𝐴𝐴𝑘𝑘 𝛾𝛾2 =
𝐹𝐹𝑘𝑘 𝐽𝐽2𝐽𝐽3𝐿𝐿, 𝐿𝐿 − 2 � 𝛿𝛿 � 𝐹𝐹𝑘𝑘 𝐽𝐽2𝐽𝐽3𝐿𝐿, 𝐿𝐿 + 1 + 𝛿𝛿2 � 𝐹𝐹𝑘𝑘 𝐽𝐽2𝐽𝐽3𝐿𝐿 + 1, 𝐿𝐿 + 1

1 + 𝛿𝛿2

𝐹𝐹𝑘𝑘 𝐿𝐿𝐿𝐿𝑝𝐼𝐼1𝐼𝐼2 = −1 𝐼𝐼1+𝐼𝐼2+1 2𝑘𝑘 + 1 2𝐿𝐿 + 1 2𝐿𝐿′ + 1 2𝐼𝐼2 + 1 𝐿𝐿 𝐿𝐿𝑝 𝑘𝑘
1 −1 0

𝐿𝐿 𝐿𝐿𝑝 𝑘𝑘
𝐼𝐼1 𝐼𝐼1 𝐼𝐼2

https://griffincollaboration.github.io/AngularCorrelationUtility/

Ferentz-Rosenzweig coefficients

https://griffincollaboration.github.io/AngularCorrelationUtility/
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A special case:

78
195𝑃𝑃𝑂𝑂 𝑠𝑠, 𝛾𝛾 78

196𝑃𝑃𝑂𝑂
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Angular correlations with arrays

Many arrays are designed symmetrically, so the range of possible angles is reduced.

Therefore one measures a Directional Correlation from Oriented Nuclei (DCO ratio)
In the simplest case, if you have an array with detectors at 350 and 900.
Gate on 900 detector, measure coincident intensities in
• other 900 detectors
• 350 detectors

Take the ratio and compare with calculations ... can usually separate quadrupoles 
from dipoles but cannot measure mixing ratios
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Angular correlations with arrays
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Angular distribution

In heavy-ion fusion-evaporation reactions, the 
compound nuclei have their spin aligned in a 
plane perpendicular to the beam axis:

𝑀 = 𝑄𝑄 × �⃗�𝐷

Depending on the number and type of particles 
‘boiled off’ before a γ-ray is emitted, transitions 
are emitted from oriented nuclei and therefore 
their intensity shows an angular dependence.

𝑊𝑊 𝜃𝜃 = 𝐴𝐴0 1 +
𝐴𝐴2
𝐴𝐴0

� 𝐵𝐵2 � 𝑄𝑄2 � 𝑃𝑃2 𝑐𝑐𝐷𝐷𝑠𝑠𝜃𝜃 +
𝐴𝐴4
𝐴𝐴0

� 𝐵𝐵4� 𝑄𝑄4 � 𝑃𝑃4 𝑐𝑐𝐷𝐷𝑠𝑠𝜃𝜃

where Ak, Qk and Pk are as before and Bk contains information about the alignment of the state

𝐵𝐵𝑘𝑘 𝐼𝐼𝑖𝑖 = 2𝐼𝐼𝑖𝑖 + 1 �
𝑒𝑒=−𝐼𝐼

+𝐼𝐼

−1 𝐼𝐼𝑖𝑖−𝑒𝑒 𝐼𝐼𝑖𝑖𝑚𝑚𝐼𝐼𝑖𝑖 − 𝑚𝑚 𝑘𝑘𝑘 𝑃𝑃 𝑚𝑚 𝑃𝑃 𝑚𝑚 =
𝐷𝐷𝑒𝑒𝐷𝐷 − 𝑚𝑚2

2𝜎𝜎2

∑𝑒𝑒′=−𝐼𝐼
+𝐼𝐼 𝐷𝐷𝑒𝑒𝐷𝐷 −𝑚𝑚𝑝2

2𝜎𝜎2
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Angular distribution

Measure: the γ-ray yield as a function of θ
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Linear polarization
A segmented detector can be used to measure the linear 
polarization which can be used to distinguish between 
magnetic (M) and electric (E) character of radiation of 
the same multipolarity.

The Compton scattering cross section is larger in the 
direction perpendicular to the electrical field vector of 
the radiation.
Define experimental asymmetry as: 𝐴𝐴 = 𝑁𝑁90−𝑁𝑁0

𝑁𝑁90+𝑁𝑁0

where N90 and N0 are the intensities of scattered photons 
perpendicular and parallel to the reaction plane.
The experimental linear polarization P=A/Q where Q is 
the polarization sensitivity of the detector

Q~13% at 1 MeV
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Linear polarization

𝑑𝑑𝜎𝜎𝑐𝑐
𝑑𝑑Ω

=
𝑄𝑄02

2
𝐸𝐸𝛾𝛾′
𝐸𝐸𝛾𝛾

2

�
𝐸𝐸𝛾𝛾
𝐸𝐸𝛾𝛾′

+
𝐸𝐸𝛾𝛾′
𝐸𝐸𝛾𝛾

− 2𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃 � 𝑐𝑐𝐷𝐷𝑠𝑠2𝜑𝜑

Maximum polarization at θ=900

Klein-Nishina formula:
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Proof of Principle

N. Pietralla, Nucl Instr Meth A483, 556 (2002)
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Linear polarization
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Efficiency versus resolution

With a source at rest, the intrinsic 
resolution of the detector can be reached; 

efficiency decreases with the increasing 
detector-source distance.

With a moving source also the 
effective energy resolution depends 
on the detector-source distance 
(Doppler effect)

Small d
Large d

Large Ω
Small Ω

High ε
Low ε

Poor FWHM
Good FWHM
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Energy resolution

The major factors affecting the final energy resolution (FWHM) at a particular energy are as follows:

Δ𝐸𝐸𝛾𝛾
𝑓𝑓𝑖𝑖𝑘𝑘𝑓𝑓𝑓𝑓 = Δ𝐸𝐸𝐼𝐼𝑘𝑘𝐼𝐼2 + Δ𝜃𝜃𝑑𝑑𝑒𝑒𝐼𝐼2 + Δ𝜃𝜃𝑁𝑁2 + Δ𝑣𝑣2

⁄1 2

Δ𝐸𝐸𝐼𝐼𝑘𝑘𝐼𝐼 − The intrinsic resolution of the detector system.
It includes contributions from the detector itself and  
the electronic components used to process the signal.

Δ𝜃𝜃𝑑𝑑𝑒𝑒𝐼𝐼 − The Doppler broadening arising from the opening angle of  
the detectors

Δ𝜃𝜃𝑁𝑁 − The Doppler broadening arising from the angular spread of the 
recoils in the target

Δ𝑣𝑣 − The Doppler broadening arising from the velocity (energy) 
variation of the excited nucleus

Δ𝜃𝜃𝑑𝑑𝑒𝑒𝐼𝐼

Δ𝜃𝜃𝑁𝑁

𝑣𝑣 ± ∆𝑣𝑣
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Special relativity
Lorentz transformation:
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Lorentz transformation

rest system laboratory system

P* = const.

total energy:

𝐸𝐸∗ = 𝛾𝛾 � 𝐸𝐸 − 𝛾𝛾 � 𝑣𝑣 � 𝑃𝑃 � 𝑐𝑐𝐷𝐷𝑠𝑠𝜃𝜃
with

𝐸𝐸 = 𝑚𝑚𝑐𝑐2 2 + 𝑃𝑃𝑐𝑐 2

E*, P* total energy and momentum in the rest system
E, P    total energy and momentum in the laboratory system

Doppler formula for zero-mass particle (photon):          E=Pc

𝐸𝐸∗ = 𝛾𝛾 � 𝐸𝐸 − 𝛾𝛾 � 𝛽𝛽 � 𝐸𝐸 � 𝑐𝑐𝐷𝐷𝑠𝑠𝜃𝜃

𝐸𝐸∗ = 𝛾𝛾 � 𝐸𝐸 1 − 𝛽𝛽 � 𝑐𝑐𝐷𝐷𝑠𝑠𝜃𝜃

E. Byckling, K. Kajantie J. Wiley & Sons   London

Hendrik Lorentz
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Doppler effect
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Doppler broadening and position resolution

Position resolution

Angular resolution

Energy resolution

beam projectile

γ ray
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Doppler broadening (opening angle of detector)
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Doppler broadening (velocity variation)
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Experimental arrangement

experimental problem:
Doppler broadening due to finite size of Ge-detector
∆𝐸𝐸
𝐸𝐸

~1% ∆𝜗𝜗𝛾𝛾 = 200 𝛽𝛽1 ≅ 10%for

For projectile excitation:

𝐸𝐸∗ = 𝛾𝛾 � 𝐸𝐸 � 1 − 𝛽𝛽1 � 𝑐𝑐𝐷𝐷𝑠𝑠𝜃𝜃𝛾𝛾1
with

𝑐𝑐𝐷𝐷𝑠𝑠𝜃𝜃𝛾𝛾1 = 𝑐𝑐𝐷𝐷𝑠𝑠𝜗𝜗1𝑐𝑐𝐷𝐷𝑠𝑠𝜗𝜗𝛾𝛾 + 𝑠𝑠𝑠𝑠𝑠𝑠𝜗𝜗1𝑠𝑠𝑠𝑠𝑠𝑠𝜗𝜗𝛾𝛾𝑐𝑐𝐷𝐷𝑠𝑠 𝜑𝜑𝛾𝛾 − 𝜑𝜑1

Δ𝐸𝐸 ≅ 𝐸𝐸∗ � 𝛽𝛽1 � 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝛾𝛾1 � ∆𝜃𝜃𝛾𝛾1

Doppler shift

Doppler broadening
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Inelastic heavy-ion scattering

raw γ-ray spectrum

181Ta

238U



Hans-Jürgen Wollersheim - 2020

Lorentz transformation

γ-ray angular 
distribution

Contraction of the solid angle element in the laboratory system

𝑑𝑑Ω
𝑑𝑑Ω∗

=
𝐸𝐸∗

𝐸𝐸

2

with

𝐸𝐸∗ = 𝛾𝛾 � 𝐸𝐸 � 1 − 𝛽𝛽 � 𝑐𝑐𝐷𝐷𝑠𝑠𝜃𝜃 Doppler formula
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Experimental arrangement (electron detection)

Doppler broadening
Δϑe = 200

target – Mini-Orange: 19 cm
Mini-Orange – Si detector: 6 cm

For projectile excitation:

𝑇𝑇𝑒𝑒∗ = 𝛾𝛾 � 𝑇𝑇𝑒𝑒 � 1 − 𝛽𝛽1 � 1 + 2𝑚𝑚𝑒𝑒 ⁄𝑐𝑐2 𝑇𝑇𝑒𝑒 � 𝑐𝑐𝐷𝐷𝑠𝑠𝜃𝜃𝑒𝑒1 + 𝑚𝑚𝑒𝑒𝑐𝑐2 � 𝛾𝛾 − 1

with

𝑐𝑐𝐷𝐷𝑠𝑠𝜃𝜃𝑒𝑒1 = 𝑐𝑐𝐷𝐷𝑠𝑠𝜗𝜗1𝑐𝑐𝐷𝐷𝑠𝑠𝜗𝜗𝑒𝑒 + 𝑠𝑠𝑠𝑠𝑠𝑠𝜗𝜗1𝑠𝑠𝑠𝑠𝑠𝑠𝜗𝜗𝑒𝑒𝑐𝑐𝐷𝐷𝑠𝑠 𝜑𝜑𝑒𝑒 − 𝜑𝜑1
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Lorentz transformation

γ-rays

γ-rays

energy shift

solid angle contraction

10%

20%
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Segmented detectors

beam

target
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Recoil distance method

𝐼𝐼𝑑𝑑𝑒𝑒𝑑𝑑𝑑𝑑𝑓𝑓𝑑𝑑𝑒𝑒𝑑𝑑 = 𝐼𝐼 � 𝐷𝐷− �𝑑𝑑 𝑣𝑣𝑣𝑣

𝐼𝐼𝑠𝑠𝑠𝑖𝑖𝑓𝑓𝐼𝐼𝑒𝑒𝑑𝑑 = 1 − 𝐷𝐷− �𝑑𝑑 𝑣𝑣𝑣𝑣

𝐼𝐼𝑑𝑑𝑒𝑒𝑑𝑑𝑑𝑑𝑓𝑓𝑑𝑑𝑒𝑒𝑑𝑑
𝐼𝐼𝑑𝑑𝑒𝑒𝑑𝑑𝑑𝑑𝑓𝑓𝑑𝑑𝑒𝑒𝑑𝑑 + 𝐼𝐼𝑠𝑠𝑠𝑖𝑖𝑓𝑓𝐼𝐼𝑒𝑒𝑑𝑑

= 𝐷𝐷− �𝑑𝑑 𝑣𝑣𝑣𝑣
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Doppler Shift Attenuation Method

target stopper

beam

Germanium
detector
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Legendre polynomials

𝑃𝑃0 𝑐𝑐𝐷𝐷𝑠𝑠𝜃𝜃 = 1
𝑃𝑃1 𝑐𝑐𝐷𝐷𝑠𝑠𝜃𝜃 = 𝑐𝑐𝐷𝐷𝑠𝑠𝜃𝜃

𝑃𝑃2 𝑐𝑐𝐷𝐷𝑠𝑠𝜃𝜃 =
1
2

3𝑐𝑐𝐷𝐷𝑠𝑠2𝜃𝜃 − 1

𝑃𝑃3 𝑐𝑐𝐷𝐷𝑠𝑠𝜃𝜃 =
1
2

5𝑐𝑐𝐷𝐷𝑠𝑠3𝜃𝜃 − 3𝑐𝑐𝐷𝐷𝑠𝑠𝜃𝜃

𝑃𝑃4 𝑐𝑐𝐷𝐷𝑠𝑠𝜃𝜃 =
1
8

35𝑐𝑐𝐷𝐷𝑠𝑠4𝜃𝜃 − 30𝑐𝑐𝐷𝐷𝑠𝑠2𝜃𝜃 + 3

𝑃𝑃5 𝑐𝑐𝐷𝐷𝑠𝑠𝜃𝜃 =
1
8

63𝑐𝑐𝐷𝐷𝑠𝑠5𝜃𝜃 − 70𝑐𝑐𝐷𝐷𝑠𝑠3𝜃𝜃 + 15𝑐𝑐𝐷𝐷𝑠𝑠𝜃𝜃

𝑃𝑃6 𝑐𝑐𝐷𝐷𝑠𝑠𝜃𝜃 =
1

16
231𝑐𝑐𝐷𝐷𝑠𝑠6𝜃𝜃 − 315𝑐𝑐𝐷𝐷𝑠𝑠4𝜃𝜃 + 105𝑐𝑐𝐷𝐷𝑠𝑠2𝜃𝜃 − 5
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