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Hydrostatic Equilibrium:

» Energy is generated in the star’s hot core,
then carried outward to the cooler surface.

> Inside a star, the inward force of gravity is
balanced by the outward force of pressure.

Hydrostatic Equilibrium

3

Gravity

as Pressute

> The star is stabilized (i.e. nuclear reactions
are kept under control) by a pressure-
temperature thermostat.

*
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Hydrostatic Equilibrium:

Self-Regulation in Stars Core Collapse in a Self-Gravitating System
Suppose the fusion rate increases slightly. » Suppose that there was no energy

Then, generation in the core. The pressure would
(1) Temperature increases. still be high, so the core would be hotter
(2) Pressure increases. than the envelope.

(3) Core expands. » Energy would escape (via radiation,

(4) Density and temperature decrease. convection...) and so the core would

(5) Fusion rate decreases. shrink a bit under the gravity

So there's a feedback mechanism which prevents the » That would make it even hotter, and then
fusion rate from skyrocketing upward. We can reverse even more energy would escape; and so on,
this argument as well ... in a feedback loop

Now suppose that there was no source of energy in stars

| :
(e.9., no nuclear reactions) =) Core collapse! Unless an energy source is

present to compensate for the escaping
energy.

» In stars, nuclear reactions play this role. In
star clusters, hard binaries do.
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Conservation of mass

» If mis the mass interior to radius r, then m, r and p are not independent,
because m(r) is determined by p(r).

» Consider a thin shell inside the star, radius r and thickness dr

Volume is dV = 4nr?dr, so mass of shell is

dm = 4nr?dr - p(r)

or

dm
—_— = 2,
7 4mre - p(r)

the equation of mass conservation
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Hydrostatic equilibrium

» Consider a small parcel of gas at a distance r from the centre of the star,
with density p(r), area A and thickness dr.
» Outward force: pressure on bottom face P(r) - A

» Inward force: pressure on top face, plus gravity
due to material interior to r:

|P(r+fh*) . ). d
area A *M\(r)--am
I~ = P(r)-A=P(r+dr)-A+ 2
- f—__ B __ﬂ _____
e e G-m(r)-p-A-dr
l =P(r+dr)-A+ ) 2p
g r
P(r)
P(r+dr)—P(r) G -m(r)
7 ~A-dr=—r—2-p(r)-A-dr
dP G-m _ _ N
— = — - p| theequation of hydrostatic equilibrium
dr r2
lternate form: ap_dP dr  G-m 1 _ G'm
alternate rorm. dm _dr dm  rz P 4 -1r2p  4mrt

—
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Estimate for central pressure

» \We can use hydrostatic equilibrium to estimate P.: we approximate the
pressure gradient as a constant

dP AP P. G-M

— N — —

dr AR R R2

p

Now assume the star has constant density, so
M M

then so
3.G - M?
€ 4.7.R"

For the Sun, we estimate P.~3 - 101* Nm~2 = 3 - 10° atm

(R=7-108m, M = 2:10%° kg, G = 6,67-10* N m2kg-?)
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Equation of state in stars

Interior of a star contains a mixture of ions, electrons, and radiation (photons).
For most stars (exception very low mass stars and stellar remnants) the ions and
electrons can be treated as an ideal gas and quantum effects can be neglected.

Total pressure:

P=P,+P,+P,
= Pgas + I:)r
* P, is the pressure of the ions

* P, is the electron pressure
* P, is the radiation pressure
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Gas pressure

The equation of state for an ideal gas is:

Pjas=n-k-T

n is the number of particles per unit volume; n = n, + n,, where n, and n, are the
number densities of ions and electrons

In terms of the mass density p:

p
Pjgs=—— k- T

U my
...where m, is the mass of hydrogen and p is the average mass of particles in
units of m,. Define the ideal gas constant:

k R
R=-= — Pras =7 P T
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Determining mean molecular weight p

u will depend upon the composition of the gas and the state of ionization.
For example:

 Neutral hydrogen: n=1

e Fully ionized hydrogen: u=0.5
In the central regions of stars, OK to assume that all the elements are fully
ionized.
Denote abundances of different elements per unit mass by:

« X hydrogen - mass my,, one electron

* Y helium - mass 4m,,, two electrons

« Z the rest, ‘metals’, average mass A-m,,, approximately
(A / 2) electrons per nucleus
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Determining mean molecular weight p

If the density of the plasma is p, then add up number densities of hydrogen, helium,
and metal nuclei, plus electrons from each species:

H He metals
number density Xp Y, Z:p
of nuclei my 4 my A-my
number density Xp 2-Y, A Z-p
of electrons my 4 - my T2 A-my

p
H:-my

3 1
n=L[2-X+—-Y+—Z]= ... assuming that A>> 1
my 2

4

3
> wl=2-X+g V42X
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REMINDER Mean molecular weight

_ . .
Consider the mean mass m per particle
2N My +nemg N 2N My

m = ~
2Ny + M, 2N+ Ne

where n; | is the ion number density of ion j, m; is its mass, and n, and m, are the numbers
and mass of the electron (and then we ignore the electron mass).

* The mass of the jth ion is approximately its number of protons and neutrons (A;) times
the amu, or m; ; = A;-m,.

» So then we define
m  Xjn -4
my  Xin+ne

l’l':

This can be interpreted as the average mass per particle (ion, electron, etc.) in units of the
amu.

Note that the total particle number density in the gas is
n=mne+n; =n, +znj,1 = Z(l +Zj) "Ny
J J

since one ionized atom contributes 1 nucleus plus Zi electrons. (z is charge of each nucleus)
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@Emmnsn Mean molecular weight p
- /
Imagine a star where 92% of all particles are hydrogen nuclei and 8% of them are helium nuclei.
What are the mass fractions of hydrogen and helium?
iy o PTH
My
PTHe
] —
A,
ry = 92m,/p
THe = 32my/p
2my/p+ 3B2my/p = 124m,/p=1
mylip = 1f124
T = H2/194 — 07419
Tie — A2f194 — () 2581
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(emmnsn Mean molecular weight

W
So using this, we now have
il
= Zi Tty Li
— e _1
Zi My T Te

or
Zi%mi
P E PIal(l_i_Z)'

i myA

One cleaner way of writing this is

—1 i Ti Ail‘l'zt' Ly
2 :E /Z:igfi }:Z

For example, for a neutral gas (Z = 0) we have
g T .
[t A, (X » = 1 & A?)

where it is standard to write mass fractions X for hydrogen, Y for helium, and Z for everything else
(metals), where X +Y + Z = 1.
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(smmnsn Mean molecular weight

S /
For a fully ionized gas
,u mzi:Ai(1+Zz}N2X+4Y+QZ,
or

" 4
TEa R o

I

where for metals we usually approximate (1 + Z;)/A; ~ 1/2 (roughly equal number of protons and
neutrons). We've eliminated Y in this expression through ¥ =1 - X — 7.
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Mean molecular weight p

Compute the mean molecular weight for (1) the ionized solar photosphere, where we have 90%
hydrogen, 9% helium, and 1% heavy elements by mass, (2) the ionized solar interior where 71%
hydrogen, 27% helium, and 2% heavy elements by mass, (3) completely ionized hydrogen, (4)
completely ionized helium, and finally (5) neutral gas at the solar interior abundance.

Answer: (1) For the photosphere we can write

2 3 1
T {}.QI x 0.091 - 0'015 — 1.8725,

or i = 0.53.
(2) For the interior we can write

9 3 1
— 0.712 10272 4 0.02= = 1.63.
E 7 el ey, -

or = 0.61.

(3) For hydrogen, we will take X = Z = A =1, and find then that 1/x = 2.
(4) For helium, X =Z=0and Y =1, so p=4/3.

(5) For a neutral gas, we have

1 1
=1 ATl 00T = — 07T
2 4 15.5 '

or =~ 1.28.
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Mean molecular weight p

Compute an expression for pt. in the deep stellar interior as a function only of X. Ignore metals.

Answer: Fully ionized case. We can write

I
fle = (TX—FEY)
1 —1
= (X+—(1—X})
2
L X 2
B ( 2 ) 14X

This should make sense. For a full H gas, the mean mass of particles per number of electrons (1/1) is 1.
For a He gas (X = 0), we have a mass of 4 divided by 2 electrons, or pi. = 2.
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Some Order-of-Magnitude

Let’s see if we can estimate roughly the conditions in the Solar core.

> Pressure P=F/A:
F~G-M§/RE
A= 4-7'[Ré)
P~ G-M§/ATRE
(Mg =~ 2-10%%kg,Rpy ~ 7 - 103m, G ~ 6.67 - 10711 Nm?kg~2)
Thus: P, ~ 10 N/m? - and surely an underestimate
True value: P, ~2-1016 N/m?

Now the temperature: 3/2-k-T =~ G - m, - M /R
(k =~ 1.4- 10723J/K =~ 1.7 - 10™%7kg)

Thus: T, ~ 1.6 - 10K
True value: T, ~ 1.57 - 10K — not bad!

(R=7-108m, M =2-10%0 kg, m,, = 1.67-10%" kg, G = 6,67-10"12 Nm?kg-2)
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Center of Sun Surface of Sun
Y Distance from Sun’s center (solar radii) 1
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Interlude: The virial theorem

» Gravity has a very important property which relates the gravitational
energy of a star to its thermal energy.

» Consider a particle in a circular orbit of radius r around a mass M

\\ » Potential energy of particle is
I

| M@ G-M-m
Y, ot

» \elocity of particle is v = /# (Kepler)

» So kineticenergy is K = %m -v? = G'A:'m
i.e. 2K=-Q or 2K+0Q=0

» Totalenergy E =K+ Q
Q

Q
——E+Q—E<O

» Consequence: when something loses energy in gravity it speeds up!
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The virial theorem

» The virial theorem turns out to be true for a wide variety of systems
from clusters of galaxies to an ideal gas; thus for a star we also have

O+2-U=0

» where U is the total internal (thermal) energy of the star and Q is the
total gravitational energy.

> So a decrease in total energy E leads to a decrease in Q but an increase
in U and hence T, i.e. when a star loses energy, it heats up

» Fundamental principle: stars have a negative heat capacity: they heat
up when their total energy decreases.

» This fact governs the fate of stars
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Timescales

There are three important timescales in the life of stars:

» dynamical timescale — the time scale on which a star would expand or
contract if the balance between pressure gradients and gravity was
suddenly disrupted

» thermal timescale — how long a star would take to radiate away its
thermal energy if reactions stopped

» nuclear timescale — how long a star would take to exhaust its nuclear
fuel at current rate
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Timescales

» Dynamical timescale:
the timescale on which a star would expand or contract if it were not in
equilibrium, also called the free-fall timescale

characteristic radius R

characteristic velocity v,

Tdyn =

Escape velocity from the surface of the star:

vesc

2:G-M
= =5 = 620 km/s

R3
tayn = 1576 M

For the Sun (R=7.100m, M =210 kg, G = 6,67-10* m3s2), Tgyy = 1100 s
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Timescales

Thermal timescale:

> the timescale for the star to radiate away its energy if nuclear reactions
were switched off: also called Kelvin-Helmholtz timescale
» Total gravitational energy available

g G - M?
grav R

> If the star radiates energy at L (J/s), then it can keep up this rate for

For the Sun, 7, = 3 - 107 y « age of Earth

—
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Timescales

Nuclear timescale: times to exhaust nuclear fuel at current rate.

n.MC.CZ

Tnuc™ L

where 7 is an efficiency factor for nuclear fusion: n ~ 0.7% and M. is the
mass of the core.

For the Sun, t,,~10%° y
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Binding energy

E.g. hydrogen burning: 4 H — He
my = 1.0081u, myge = 4.0039u
S0

F = (4 x 1.0081 — 4.0039)c? = 2.85 x 1072¢?
= 26.7 MeV per He nucleus

Fraction of rest-mass energy liberated:
e = 2.85 x 1072/(4 x 1.0081) = 0.007

The transformation of H into He liberates 0.7% of the rest-mass of the
system in the form of energy
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Timescales

» For stars,

Tdyn K T K Thuc

> Tgyn = timescale of collapsing star, e.g. supernova

> T, = timescale of star before nuclear fusion starts, e.g. pre-main
sequence lifetime

> Tnuce = timescale of star during nuclear fusion, e.g. main-sequence
lifetime
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Timescales

» Most stars, most of the time, are in hydrostatic and thermal equilibrium,
with slow changes in structure and composition occurring on the (long)
timescale t,,,, as fusion occurs

» If something happens to a star faster than one of these timescales, then it
will NOT be in equilibrium.

e.g. sudden addition of energy (nearby supernova?), sudden loss of mass
(binary interactions)
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Stars show spectra very close to black-body radiation

d
J. Stefan & L. Boltzmann
flux at the surface: measured flux:
4 R.\*
F =055 T, with o = 5.67-108 W m2 K F = (3*) N

Iuminosity (Stefan-BoItzmann Iaw) is the flux multiplied by entire spherical surface.

L=4m -~ Osp @

Luminaosity is proportional to feuih power of temperature.

Sun

S | ~

ey
I
12,000 K

L= L=1E

CEEEY -2
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Hertzsprung-Russell diagram

108

. T ) Betelgeuse
M, R, L and T, do not vary independently. - . @ ) - Deneb :
Two major relationships — L with T 104+ : @
— L with M . .. e
e 102k .. % wega e
_ T T
The first is known as the Hertzsprung- = [k, SiiusAl e
Russell (HR) diagram or the colour- R haliﬁ-
magnitude diagram. R .
= e " ..
30l EirusB e *‘E;.,‘h_
Cap )
= T "F:'[EII:"_-,-“EIFI B -
Tk,
104 L .
L1 e IR B
30,000 10,000 5000 3000 2500
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