Rotations for Deformed Shapes

The pure liquid drop model has a stable equilibrium only for spherical sur-
faces. As a consequence of quantum mechanics - i.e. shell effects - it can happen
that the nucleus has a permanent deformation. We shall restrict ourselves to
axial symmetric deformations of an even-mass nucleus (see fig.1) which
should also be invariant with resept to a rotation of 180° about the 2-axis.
In this case the nucleus can only rotate around an axis perpendicular to the
symmetry axis.
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Figure 1: Energy spectrum (left) and shape (right) of an axial symmetric rota-
tor.

Before we will investigate these rotations, we have to parametrize the de-
formed nuclear surface. One possibility is

R =R(8,9) = Ro(1 + Bo + B2Y20(8, ¢) + B1Yao(6,0) + ...) (1)

where Ry is the radius of the sphere with the same volume and Y)o(0, ¢) are
the spherical harmonics. The expansion (Eq. 1) contains only even values of A,
with B2 and 4 being the quadrupole and hexadecapole deformation parameters,
respectively. Since we require that the nuclear volume is kept fixed for all
deformations, we get

Bo = ——(1B2/* + |64 + ...) (2)
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The rotational spectrum is given by
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By = 5= I(I+1) + Bxo (3)

with the band head Ex—y and the moment of inertia 7. If we consider the
motion of an irrotational liquid that is held in a nonspherical shape, which is
rotated uniformly, the moment of inertia is given by
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Tirr = 5o AMBG (85 + 565) (4)
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It differs from the moment of inertia of a rigid body with the same defor-
mation
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For the reduced transition matrix elements (Eq. ??7) to the first excited
states we find
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2T M(E2)||0T >= 4/ —
<2"||M(B2)[0" >=/7—Qu e (6)

and
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AT |M(ED|0T >= 4/ —
<4T||M(E)[j0" >= /7 Quo e (7)

where the intrinsic quadrupole moment Q29 and intrinsic hexadecapole mo-
ment Q40 is calculated for a uniform charge distribution in the liquid-drop
model up to second order
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Q20 = o (B2 +0.36055 + 0.967334 + 0.32833) (8)
and
ZR4
Qa0 = N3 0 (Bs + 0.4113% + 0.98383284 + 0.72533) 9)

Energy-B(E2) Product In the irrotational flow model the energy-B(E2)
product for a pure quadrupole deformation is given by

1,3ZeR? , o R°
Ey+ B(E2;27 — 0" 10
o BER2T - 0%) = c(COo0 P8 56 (10
with
Tirs = — AM R332 (11)
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Thus, we get for the rotational energy-B(E2) product,
Z2

Eyr B(E2;27 —07) =575 1074 =~ MeV e*barn? (12)
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which is a factor of 2.5 smaller than the vibrational energy-B(E2) product
(Eq. ??). However, the experimental product of the energy and B(E2)-value
reaches only 17-19% of the rotational limit.

For the other intraband E2-transitions we find

3(I+2)(I+1)
<I+2,K:O||M(E2)|I,K:0>:\/ +2I+3+ \/ ane (13)
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I(I+1)(21 +1)
<I,K=0||M(E2)||I,K=0>=—
K = 0| M(E2)||LK =0 > \/(21_1””\/ Qu ¢

<I—2,K:0]|M(E2)|\I,K:0>:,/ 21_1\/ nge

For the static M1 and E2 moments we obtain
() = grpnI

I(I+1)

QU) = T+ 1)1 +3)

Q20

(16)
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The quantity gg is the effective g-factor for the collective motion; it is again

expected to be of the order of gg ~ Z/A (un = 55 ).



