
Particle-plus-Rotor Model

In the strong coupling limit or deformation aligned limit, the odd
particle adiabatically follows the rotations of the even mass core. It is realized
if the coupling to the deformation is much stronger than the perturbation of the
single particle motion by the Coriolis interaction. In a semiclassical picture, the
angular momentum j of the valence particle precesses around the 3-axis, which
is shown in the coupling scheme of fig. 1. Assuming that the rotor has the 3-
axis as axis of symmetry, it follows immediately that K, the 3-component of
the total angular momentum I, has to be equal to Ω, the 3-component of j. In
this case K is a good quantum number.

Figure 1: Energy spectrum (left) and shape (right) of an odd-mass axial sym-
metric rotator. The odd particle follows adiabatically the rotation of the even
mass core (strong coupling limit).

The energy spectrum is given by

EK(I) = εK +
h̄2

2J [I(I + 1)−K2 + δK,1/2 a(−)I+1/2(I + 1/2)] (1)

where a is the so-called decoupling factor. The lowest possible spin is I=K.
The spectrum has a spacing4I=1 and its moment of inertia is that of the rotor.
For a positive decoupling factor the levels with odd values of I + 1

2 (I=1
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9
2 ,...) are shifted downwards.

For the reduced transition matrix elements (Eq. ??) between states with
the same K value we obtain

< I − 2, K||M(E2)||I, K >=

√
15

32π

√
(I +K − 1)(I +K)(I −K − 1)(I −K)

(I − 1)(2I − 1)I
Q20 e (2)

< I − 1, K||M(E2)||I, K >= −
√

5

16π

√
3(I +K)(I −K)

(I − 1)I(I + 1)
K Q20 e (3)

< I,K||M(E2)||I, K >= −
√

5

16π

√
2I + 1

(2I − 1)I(I + 1)(2I + 3)
(I2 − 3K2 + I) Q20 e (4)
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< I + 1, K||M(E2)||I, K >=

√
5

16π

√
3(I +K + 1)(I −K + 1)

I(I + 1)(I + 2)
K Q20 e (5)

< I + 2, K||M(E2)||I, K >=

√
15

32π

√
(I +K + 1)(I +K + 2)(I −K + 1)(I −K + 2)

(I + 1)(I + 2)(2I + 3)
Q20 e

(6)

According to the separation of the system into valence particles and a core,
we have two contributions for the intrinsic quadrupole moment. Since the core
contribution is much larger than the particle contribution, the latter can be
neglected and Q20 is given by Eq. ??.

Intraband M1 transitions are induced if the band has a gK factor different
from gR.

< I − 1,K||M(M1)||I,K > = −
√

3

4π

√
(I +K)(I −K)

I
K(gK − gR)

[1 + δK,1/2(−)I+1/2b0] µN (7)

< I,K||M(M1)||I,K > =

√
3

4π
µN
√

2I + 1{(gK − gR)[
K2

√
I(I + 1)

+
2I + 1

4
√
I(I + 1)

b0(−1)I+1/2δK,1/2]

+gR

√
I(I + 1)} (8)

< I + 1,K||M(M1)||I,K > =

√
3

4π

√
(I +K + 1)(I −K + 1)

I + 1
K(gK − gR)

[1 + δK,1/2(−)I+1/2b0] µN (9)

The quantity b0 depends on the magnetic decoupling parameter (Eq. 13).
For a band with K > 1/2, the E2/M1 mixing ratio (Eq. ??) can be written

δif (E2,M1) = 0.835

√
5

4

1√
(I − 1)(I + 1)

Q20 e

(gK − gR)
(10)

For the static M1 and E2 moments we obtain

µ(I) = {gRI + (gK − gR)
K2

I + 1
[1 + δK,1/2(2I + 1)(−)I+1/2b0]}µN (11)

Q(I) =
3K2 − I(I + 1)

(I + 1)(2I + 3)
Q20 (12)

The second term in the bracket of Eq. 11 (b0) depends on the decoupling
factor. For Ω = 1/2, the magnetic decoupling parameter is given by
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(gK − gR)b0 = −(g` − gR)a− 1

2
(−1)`(gs + gK − 2g`) (13)

For the one-quasiparticle state, the gK factor can be estimated in the ex-
treme single-particle model from the expression

gK = g` ±
1

2`+ 1
(gs − g`) for j = `± 1

2
(14)

where gs and gl are the spin and orbital g-factor for the last odd nucleon.
The constants for a free single-proton are g` = 1, gs = 5.586 and for a free
single-neutron are g` = 0, gs = −3.826, respectively. If we assume that the free
nucleon moments persist in the nucleus, the above formula gives the so-called
Schmidt moments ([Sch37]).

Once we know the magnetic moment of a single-particle state, the question
arises what values to expect for the magnetic moments of two- or more-particle
states. We have the generalized Landé formula

g(j1xj2; J) =
1

2
(g1 + g2) +

j1(j1 + 1)− j2(j2 + 1)

2J(J + 1)
(g1 − g2) (15)

A special case is the two-particle state (jxj; J) configuration, where we have
the identity g(jxj; J) = g(j).

In the high-spin limit with I � K the transition probabilities and static
moments can be replaced by their classical analogs

B(M1; I → I ± 1) ' 3

4π

K2

2
(gK − gR)2[1 + b0(−1)I+1/2δK,1/2]2 µ2

N (16)

µ(I) ' gRI µN (17)

B(E2; I → I ± 2) ' 5

16π

3

8
Q2

20 e
2 (18)

B(E2; I → I ± 1) ' 5

16π

3

8
(
2K

I
)2Q2

20 e
2 (19)

Q(I) ' −1

2
Q20 (20)

Thus in the high-spin limit the B(M1; I → I±1), B(E2; I → I±2) and Q(I)
are independent of I while the magnetic moment increases with increasing spin.
Furthermore the E2 transitions between states with I and I ± 2 are favoured
compared to the I → I ± 1 transitions.
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